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Abstract— Object search is a challenging task because when
given complex language descriptions (e.g., “find the white cup
on the table”), the robot must move its camera through the
environment and recognize the described object. Previous works
map language descriptions to a set of fixed object detectors
with predetermined noise models, but these approaches are
challenging to scale because new detectors need to be made
for each object. In this work, we bridge the gap in realistic
object search by posing the search problem as a partially
observable Markov decision process (POMDP) where the object
detector and visual sensor noise in the observation model
is determined by a single Deep Neural Network conditioned
on complex language descriptions. We incorporate the neural
network’s outputs into our language-conditioned observation
model (LCOM) to represent dynamically changing sensor noise.
With an LCOM, any language description of an object can
be used to generate an appropriate object detector and noise
model, and training an LCOM only requires readily available
supervised image-caption datasets. We empirically evaluate our
method by comparing against a state-of-the-art object search
algorithm in simulation, and demonstrate that planning with
our observation model yields a significantly higher average task
completion rate (from 0.46 to 0.66) and more efficient and
quicker object search than with a fixed-noise model. We demon-
strate our method on a Boston Dynamics Spot robot, enabling
it to handle complex natural language object descriptions and
efficiently find objects in a room-scale environment.

I. INTRODUCTION

Object search is a challenging task because the robot has
incomplete knowledge of the environment, limited field of
view, and noisy sensors. When asked to find an object in
an environment, the robot must first infer the desired object
from the language instruction, then efficiently move around
the space to look for the object. Most images captured by
the robot in this process will not contain the target object.
Furthermore, even when the object is in the robot’s field of
view, it might not be detected due to occlusion, sensor noise,
the viewing angle, the object’s distance from the robot, etc.

There have been many previous works on improving the
efficiency and accuracy of robot object search by using
prior semantic knowledge [1], active visual search [2, 3],
object manipulation [4, 5, 6], and belief factorization for
multi-object search [7, 8]. However, these works have often
assumed that the target objects are specified with very simple
language (such as “cup” for the object’s class), and thus can-
not fully utilize more complex language descriptions (such
as “white cup”) to avoid exhaustively searching over similar
object instances in the environment. Furthermore, the robot
is usually assumed to have a fixed-accuracy object detector
[1, 3, 7, 8] or that detection noise only comes from occlusion
[4, 5]. This is challenging to scale as new occlusion models

(a) A scene with the ground
truth segmentation mask for the
target object (“the green mug
on the left”).

(b) Most images captured by the
robot do not contain the target
object.

Fig. 1: Our system takes as input a natural language descrip-
tion of the target object, and constructs a detector for that
object based on the description. It addresses the problem
that most images captured by a robot when searching for
an object do not contain that object by incorporating a
modified training process and using the confidence score of
the detector in a POMDP model for object search.

and detectors have to be made for new objects. Additionally,
modeling the detector as having a fixed accuracy prevents
the robot from dynamically reasoning about observations
it gets from the detector. This means the robot is unable
to decide to gather more data instead of trusting a low-
confidence detection, or trust a high-confidence detection
more easily, potentially leading to reduced object search suc-
cess rates and efficiencies. The computer vision community
has developed deep learning models that can detect objects
with high accuracy [9, 10], even given complex language
descriptions of the desired object such as “white cup on the
left” [11, 12, 13]. However, these models often assume that
the object is somewhere in the input image and must be
localized within that image. In contrast, when searching for
objects, most images captured by the robot will not contain
the object being searched for (Figure 1).

Our work addresses these problems by embedding a deep-
learned object detector within a Partially Observable Markov
Decision Process (POMDP) [14]. Our approach takes as
input a language description of an object, and uses it to
condition a camera-based observation model that is used to
plan object-search actions and update the agent’s belief about
the object’s pose. To achieve this, we modify the training
process for the detector from Hu et al. [11] to handle the
large number of images which do not contain the target
object, and incorporate the detector’s confidence scores into
the POMDP belief updates. This allows us to handle complex
language descriptions and search for objects more efficiently
in household environments by reasoning dynamically. Our
contributions are five-fold:

1) An experimental analysis on confidence scores out-
putted from language-conditioned visual segmentation mod-
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els as a proxy for different sources of observation noise.
2) A novel class of visual observation models (Language-

Conditioned Observation Models – LCOMs) whose detec-
tions and parameters are conditioned on natural language.

3) A novel decision making framework for object search
that leverages LCOMs to use natural language to account for
scene-dependent detection accuracy when estimating state
uncertainty for planning.

4) A set of experiments on simulated robot hardware that
compare the performance of planning models using LCOMs
against fixed-noise sensor models on the object search task.

5) A demonstration of our method on a Boston Dynamics
Spot robot [15], which enables Spot to handle complex nat-
ural language object descriptions and efficiently find objects
in a room-scale environment, without using fiducial markers.

II. RELATED WORK

Related work for robot object search generally falls into
one of two categories: model-based and end-to-end policy
learning. Model-based approaches separate state estimation
and planning to leverage probabilistic inference, whereas
model-free approaches leverage deep neural networks to
learn a policy end-to-end.

There is a collection of works that employ deep learning
for end-to-end visual and object search [16, 17, 18, 19] or
modular differentiable components [20, 21]. Our work differs
from these in that we perform model-based planning to
leverage our known dynamics models. Model-based planning
has the potential to generalize better to new environments and
systems with less training data because we encode a model
of the robot’s sensor and actuation capabilities, and only use
deep learning for visual processing.

POMDPs [22] are a framework for sequential decision
making under uncertainty frequently used for object search
problems. Li et al. [4] and Xiao et al. [5] treat object search
in clutter as a POMDP that can be efficiently solved by
using approximate online planners and constraining planning
samples based on spatial constraints and conditioning action
selection on the current belief state, respectively. However,
their observation models are only based on occlusion statis-
tics calculated from object region overlap. Our proposed
observation model can instead account for errors not solely
derived from occlusion by conditioning on complex lan-
guage. Danielczuk et al. [6] train a deep learning model to
segment colored masks for objects in a pile from RGB-D
images and score each mask on whether it belongs to the
target object. They, however, use a fixed object priority policy
for action selection and assume a fixed sensor pose, while
we focus on planning how to explore a space for the purpose
of object search by leveraging an active sensor.

Aydemir et al. [3] frame the object search problem as
active visual search and calculate candidate viewpoints based
on a probability distribution over the search region, which
is informed by prior knowledge of correspondences between
objects and semantic room categories. However, they do not
account for sensor error and assume the object to be detected
if it is in the robot’s field of view. Atanasov et al. [2] plan a

sequence of sensor views to effectively estimate an object’s
orientation. These approaches are similar to our work in that
they account for realistic sensor model errors, but unlike our
work they do not use a general camera-based object detector.

Wandzel et al. [7] introduce Object-Oriented POMDP
(OO-POMDP) to factorize the robot’s belief into independent
object distributions, enabling the size of the belief to scale
linearly in the number of objects, and employ it for efficient
multi-object search. Zheng et al. [8] extend OO-POMDP for
efficient multi-object search in 3D space. Both of these works
assume simple language inputs and fixed-accuracy object
detectors. Our work builds on these frameworks but instead
explores using a deep-learned detector that takes as input a
natural language phrase and camera image to create an object
detector that models varying levels of accuracy.

The computer vision community has developed deep learn-
ing models trained on object segmentation datasets that can
detect objects with high accuracy [9, 10, 11, 12, 13]. The
models self-supervisedly learned to output confidence scores
along with their detection results. The output confidence
scores do a good job of reflecting the models’ detection
accuracy, which dynamically changes depending on the input
images. We build on the model developed by Hu et al. [11]
for our object detector because it is trained to handle referring
expressions—complex noun phrases to describe objects.

III. PRELIMINARIES

POMDPs are a framework for modeling sequential deci-
sion making problems where the environment is not fully
observable. Formally, a POMDP can be defined as a tuple
< S,A,Ω, T,O,R >, where S,A,Ω denote the state, action,
and observation spaces of the problem, respectively. After the
agent takes action a ∈ A, the environment state transitions
from s ∈ S to s′ ∈ S following the transitional probability
distribution T (s, a, s′) = p(s′|s, a). As a result of its action
and the state transition, the agent receives an observation
z ∈ Ω following the observational probability distribution
O(s′, a, z) = p(z|s′, a), and a real-valued reward R(s, a).

Because the environment is partially observable, the agent
does not have full knowledge of the current state s and
instead maintains a belief state b which is a probability
distribution over the states in S. The agent starts with an
initial belief b0 and updates its belief after taking an action
and receiving an observation (where η is the normalizing
constant): b′(s′) = ηO(s′, a, z)

∑
s∈S T (s, a, s′)b(s).

A policy π is a mapping from belief states to actions. The
agent’s task is to find a policy that maximizes the expected
sum of discounted rewards given an initial belief:

V π(b0) = E
[∑∞

t=0 γ
tR(st, at)

∣∣∣∣at = π(bt)

]
where the dis-

count factor γ determines the impact of future rewards on
current decision making.

While many problems can be modeled by POMDPs, they
are typically computationally intractable for exact planning
in large domains [23]. To address the planning complexity,
we use the sampling-based planner PO-UCT [24], which uses
Monte-Carlo tree search with upper confidence bounds to



select an action by estimating the best state-action values
using rollouts conditioned on states sampled from the current
belief state, and then performs an exact belief update each
time step based on the incoming observation and performed
action. PO-UCT has successfully been used in robotic object-
search settings [7, 8]. However, we note that our contribution
is not dependent on the specific method of planning and state
estimation, and LCOMs would be useful in any approach that
requires a model of the observation probability distribution.

IV. OBJECT SEARCH FORMULATION

We model object search as a POMDP with an observation
model corresponding to a deep-learned object detector.

A. Planning Framework

To model the object search problem, we assume access
to an occupancy-grid map, M , which is an m × n grid
that marks locations as either empty or occupied, and is
used for defining the space of positions and directions in the
environment. We assume an object is completely contained
within one of the grid cells in the map. Our main contri-
bution is the novel language-conditioned observation model
(LCOM), which modifies the observation model dynamically
based on the results of the deep-learned object detector, and
which we describe in detail in Section IV-B. Formally, we
define the object search POMDP problem as a 10 tuple:
< od, L, S,A, T,R, γ,Ω, hL, O >

1) od: is a desired object that exists in the environment
(not including the robot). The desired object od has a
2D position attribute (xod , yod) = od, representing its
discrete position in the occupancy-grid map M . The
desired object is used to define the reward function.

2) L: is a string of words representing the natural lan-
guage command given by the human, such as “The
white cup on the table.” L is only used to condition
the visual observation model and transform raw images
into our fan-shaped sensor model. We defer more
details to Section IV-B. In this work we assume L
to be given at the start and remain constant throughout
the interaction, and defer handling dynamical language
to future work.

3) S: is a set of states, where each state s ∈ S is a 2 di-
mensional vector (od, r) = s, where r = (rx, ry, ro) is
a 2D position and discrete orientation (NORTH, EAST,
SOUTH, WEST) for the robot in M . We assume r is
fully observable and od is only partially observable,
yielding a mixed-observable state. This assumption is
equivalent to assuming our robot is equipped with a
LIDAR sensor and has previously run SLAM [25] and
localized itself within that map, but does not know
where the desired object is currently located.

4) A: is a set of actions the robot can execute to move
around the map, observe object locations, and declare
the desired object as found. Specifically, we have three
types of parameterized actions:

a) Move(DIR): points the robot in direction DIR
and moves it one grid in that direction, with DIR
being either NORTH, EAST, SOUTH, WEST.

b) Look: has the robot execute a look action from
its current position and orientation (rx, ry, ro).

c) Find(X,Y ): has the robot attempt to find the
desired object od at grid cell (X,Y ). If od is at
(X,Y ), the action will mark the object as found
and terminate the episode.

5) T : is a deterministic transition function, where Move
actions transition the robot to different states by chang-
ing its position and orientation (rx, ry, ro). Find ac-
tions can transition the robot to a terminal state after
finding the desired object.

6) R: is a reward function, where all Move actions
receive −2 reward each, Look receives −1 reward, and
Find(X,Y ) receives a 1000 reward when done at the
location of the desired object (X,Y ) == (xod , yod)
and −1000 otherwise.

7) γ: is the discount factor, which we set to 0.9.
8) Ω: is the set of observations from our sensor, where

each ω ∈ Ω is a pair of RGB and depth images.
9) hL: Ω → zs, cs is a language-conditioned observation-

mapping function that transforms raw images into
observations from the same fan-shaped sensor model
described in Wandzel et al. [7] and confidence scores
for each object detection. If the desired object od is
not detected by the sensor, zs = NULL. Otherwise,
zs is the location (X,Y ) where od is detected in
the discretized fan-shaped region V . cs represents the
object-specific observation confidence score. We de-
scribe how hL is used for LCOMs in Section IV-B, and
our particular instantiation of hL for our experiments
in Section IV-C.

10) O: is the Language-Conditioned Observation Model
(LCOM), which assigns probabilities to observations
zt based on the current state st, action at, and natu-
ral language command L. The Move actions always
produce the NULL observation, the Look action pro-
duces noisy fan-shaped measurements conditioned on
the language, and the Find(X,Y ) action always pro-
duces the NULL observation except when (X,Y ) ==
(xod , yod). We discuss the observation model in more
detail in the following subsection.

B. Language-Conditioned Observation Model (LCOM)

Figure 2 presents an overview of LCOM. When we
receive an RGB-D sensor observation, ω, we can transform
it into our fan-shaped sensor observation zs and associated
confidence scores cs by using the language-conditioned ob-
servation mapper hL(ω) = zs, cs. LCOMs are independent
of any particular instantiation of hL as long as they satisfy
the functional definition described in Section IV-A, and for
the rest of this section’s discussion we treat hL as a black
box function. In our experiments, we instantiate hL using a
deep neural network.



Fig. 2: LCOM Overview: The robot receives an RGB-D
image and language description of the object. RGB-D and
language go into hL, which produces language-conditioned
confidence scores cs for our fan-shaped detected observations
zs. The confidence scores are then transformed by gL into
a noise model for the detected observations, which is used
to update the belief about the object’s location via state
estimation. Ovals are algorithms, and rectangles are data.
The shaded oval is learned.

We treat zs as having a probability of being drawn
from three mutually exclusive and exhaustive events: a true
positive (A), a false positive (B), or a true or false negative
(C). More formally, let A be when zs is from the desired
object od and zs ∈ V , B be when zs ∈ V but zs comes from
other sources besides od, and C be when zs = NULL.
We assume the Find(X,Y ) action always give perfect
information about the potential object at location (X,Y )
(i.e., observations resulting from Find are not language-
conditioned). In simulation this is reflected by knowing the
ground truth state, and in real-life this can be reflected by
asking a human to verify the selected location. For the Look
action, we parameterize the probability of each of the events
and the noise model for the observation conditioned on
that event based on the associated confidence score cs, and
decompose the observation model p(zs|s, a) into:

p(zs|s, a, cs) =
∑

e∈{A,B,C}

p(zs|e, s, a, cs)p(e|s, a, cs) (1)

If event A occurs, the observation is distributed normally
with µ being the true object position: p(zs|A, s, a, cs) =
η′Norm(zs|µ,Σ). η′ is the normalization factor, and the
covariance matrix is defined by Σ = σI2×2. If event B
occurs, the observation is distributed uniformly within the
sensor region: p(zs|B, s, a, cs) = 1

|V | . If event C occurs,
the null observation has nearly 1 probability while any other
observation has nearly 0 probability, which we implement
with additive smoothing.

Similar to Wandzel et al. [7], we define the probability of
the events as p(A|s, a) = α, p(B|s, a) = β, p(C|s, a) = γ,
where α + β + γ = 1. The probability of these events are
conditioned on whether or not the desired object od is in the

fan-shaped sensing region V , which is defined as:

(α, β, γ) =

{
(ϵTPR, 0, 1− ϵTPR) if od is in V

(0, 1− ϵTNR, ϵTNR) if od is not in V
(2)

where ϵTPR represents the sensor’s true positive rate, and
ϵTNR represents its true negative rate.

Together σ, ϵTPR, and ϵTNR define the sensor’s overall
accuracy. To implement the function gL, which transforms
the confidence scores to the sensor noise in the observation
model, we map the continuous value of cs to a discrete range
of hyper-parameter values that represent high-confidence
and low-confidence for each setting, respectively. In our
experiments, we map ϵTPR to 0.7 and σ to 0.6 when cs ≥ 1,
and ϵTPR to 0.5 and σ to 1 otherwise. These numbers reflect
that when the detector’s confidence is high, the true positive
rate should be high and the uncertainty over the observed
position of the object should be low.

We note that LCOMs depend on visual input to detect
potential objects in the image and report confidence scores
that are used to define the sensor noise in the observation
model. During state estimation with real-robot hardware,
acquiring visual input is straightforwardly done by capturing
images with the robot’s camera. During planning, however,
acquiring visual input may be challenging because it requires
synthesizing novel images based on the pose of the robot
and potential location of the target object. For computational
efficiency, when performing visual object search in our
experiments, we only use LCOMs for updating the agent’s
belief during state estimation, and use a fixed observation
model similar to Wandzel et al. [7] during planning based
on the 2D geometries of the known occupancy-grid map
M . Integrating different 3D scene representations into the
planning module is straightforward but orthogonal to our
contribution, so we defer this investigation to future work.

C. Object Detector

We build upon the model developed by Hu et al. [11] for
our object detector as it can handle complex noun phrases to
describe objects. The model takes in a referring expression
and RGB image and outputs scores for every pixel in the
image, which are then binarized and returned as the predicted
segmentation mask for the image region described by the
language. The loss function used for training is the average
pixelwise loss: Loss = 1

WH

∑W
i=1

∑H
j=1 L(vij ,Mij). W

and H are image width and height, vij is the pixel’s score,
and Mij is the binary ground-truth label at pixel (i, j).

The original model by Hu et al. [11] was trained on the
ReferIt dataset [26] which mostly contains outdoor images,
whereas we are interested in detecting indoor household
objects. We, therefore, additionally trained the model on the
RefCOCO dataset [26] which contains referring expression
annotations for segmented objects from the COCO dataset
of common objects in context [27]. Furthermore, the original
model was primarily trained on positive examples such that
most images contained the target object, and the model only
had to learn to identify where the object was in the image.
In contrast, when using a model like this for object search,



Fig. 3: Simulated Scenes: example images of the AI2-THOR
scenes used in our experiments. The scene categories are:
kitchen (top left), living room (top right), bedroom (bottom
left), and bathroom (bottom right).

most images fed to the model will not contain the referenced
object. Thus filtering a large number of true negatives without
missing the rare true positive is key to good performance
in search tasks. We augmented the model’s training data
with negative examples where the object described by the
referring expression does not appear in the image, and thus
the model should return an empty segmentation mask. Our
model, trained on the augmented data with a learning rate
of 0.01, achieved a true negative rate of 0.918, a significant
improvement over the original model’s true negative rate of
0.124.

We now describe our instantiation of hL for our experi-
ments based on the deep learning segmentation model. The
model takes in the RGB image and language L and outputs a
segmentation mask—a binary image which identifies pixels
that are part of the target object described by L. If the
mask is empty, the model did not detect the object and
zs = NULL. Otherwise, we take the average of the depth
value at each pixel in the mask as well as the coordinates
of the mask’s center point and project it into a location
(X,Y ) in the robot’s fan-shaped sensing region (i.e., fan-
shaped projection) and return (X,Y ) as zs. We also retain
the model’s original output score for each pixel, which we
average over all pixels in the mask and use as the confidence
value cs for the detection. We note that the scores were not
specifically trained for this task.

V. EXPERIMENTS AND RESULTS

Our aim is to test the hypothesis that language-conditioned
observation models combined with POMDPs can increase a
robot’s speed and accuracy in finding objects in complex
environments. We evaluated our system both in a variety of
simulation environments and on a real physical robot.

A. Simulation Results

We use scenes from the AI2-THOR simulator [28] to
conduct our experiments. AI2-THOR consists of 120 near
photo-realistic 3D scenes spanning four different categories:
kitchen, living room, bedroom, bathroom. We select a subset
of 15 scenes with 30 target objects (for an average of 2
objects/scene) for our experiments. Figure 3 shows images

(a) (b)
Fig. 4: Simulation Results: Task completion rates and
success weighted by path lengths for a simulated sensor and
deep-learned sensor with static/dynamic observation models.

of the scenes used in our experiments. The average size of
a scene is 4× 4 meters, which we discretize into a 16× 16
cell grid map with each cell being 0.25× 0.25 meters.

We build upon the POMDP implementation by Zheng
and Tellex [29] in the pomdp py library. We modeled the
POMDP as having no prior knowledge of the target object’s
location, thus it had a uniform initial belief state over all
possible object locations. We used a planning depth of 3,
exploration constant of 10000, planning time of 10 seconds
for each action, and gave the agent a maximum time of 5
minutes and 10 Find actions to complete each object search
task. We generated simple natural language descriptions of
the objects in our experiments as input to the agent.

Results appear in Figure 4. We present both the task
completion rate—the percentage of time the robot success-
fully finds the object, and success weighted by normal-
ized inverse path length (SPL) [30]. SPL is calculated as:
1
N

∑N
i=1 Si

li
max(pi,li)

where N is the total number of tasks, li
is the shortest path from the agent to the goal for task i, pi is
the path the agent actually took for the task, and Si is a binary
indicator of success in the task. For our experiments, pi is the
number of actions the agent actually took to search for the
object, and li is the lowest number of actions needed to find
the object. If the agent achieves a higher task completion rate
but took more steps overall to find the objects, it will have
a lower increase in its SPL. We collected li by performing
planning with a perfect sensor with no noise. The perfect
sensor was able to find all 30 objects at an average of 7.8
actions per object search task.

Each different version of our model was tested 3 times
and we report the average and standard error in their per-
formance. We present results for fixed optimal values of
the sensor parameters computed from the scenes in our
dataset. Our deep learning model achieved a true positive
rate (TPR) of 0.581, a true negative rate (TNR) of 0.918,
and a covariance of 0.827 for the normal distribution over
the desired object’s position. We then show results with σ,
ϵTPR, and both σ & ϵTPR values set dynamically based on
the deep-learned detector’s output confidence score As the
sensor’s TNR is already high, we decide to keep ϵTNR fixed.
Lastly, we show the performance with a simulated sensor
whose noise model perfectly matches the model used for
planning by the POMDP.

As expected, the performance for the simulated sensor is



Fig. 5: Real Robot Demonstration: sample images from our
real robot experiments with the Spot using LCOMs to find an
object. top left: the robot is turned on and tasked with finding
“the green mug on the left.” top right: the robot’s uniform
initial belief about the target object’s location. bottom left:
the robot moves and looks at a part of the room where the
object is not located, and updates its belief that the object is
most likely somewhere else. bottom right: the robot moves
and looks where the object is actually located, and after
updating its belief has maximum likelihood estimate at the
target object’s true location.

the best. This is because the sensor observations are being
generated from ground truth with exact noise models. This
provides an upper bound on our system’s performance, and
also indicates that if we used a more realistic sensor model,
our system has the potential to perform even better. In
particular, the simulated sensor will sample multiple images
with the same viewpoint independently, which is not true for
the deep-learned detector. All versions of our system with a
dynamic observation model outperform the static version. In
addition, the version with dynamical σ & ϵTPR achieved a
significantly higher average task completion rate and SPL
than the static version (from 0.46 to 0.66, and from 0.30 to
0.45, respectively). On average, this version took 10.1 actions
and 104 seconds to find each object, compared to the 11.5
actions and 118 seconds taken by the static version. Overall,
these results demonstrate that using a dynamic observation
model significantly improves the ability of our system to find
objects quickly and efficiently in realistic environments.

B. Real-World Demonstration

We provide a real-world demonstration on the Boston
Dynamics Spot robot. The robot takes as input an occupancy-
grid map of the environment and a typed natural language
phrase describing the desired object. RGB and Depth images
are taken from two separate cameras in the robot’s hand, and
pixel correspondence between the two images is computed
using both cameras’ intrinsic and extrinsic matrices. Spot
moves through the environment by taking steps that are
0.6 meters (one grid cell) in length, and all decisions are
driven by the POMDP until it finds the object. Scenes

(a) (b)
Fig. 6: ViLD Simulation Results: Task completion rates and
success weighted by path lengths for a simulated sensor and
ViLD with static/dynamic observation models.

from our demonstration and the corresponding belief updates
from using LCOMs with real robot hardware are shown in
Figure 5. Full video footage of the robot executing the task,
the incoming sensor data, and the LCOM outputs is available
at https://youtu.be/3Z4XQUQXCsY. The robot was
asked to find “the green mug on the left” and successfully
did so in 8 actions, where the planning and execution of
each action took 10 seconds. This demonstration shows our
system runs on a real-world platform in a realistically sized
environment, computes a policy and observations efficiently,
and enables a robot to efficiently search for and find objects.

C. ViLD Experiments

Given the recent success in open-vocabulary image classi-
fication/object detection powered by CLIP [31], we swapped
out our trained object detector with ViLD [12], an object
detector trained via vision and language knowledge distilla-
tion, for our object search experiments. ViLD takes in natural
language expressions and an RGB image, proposes regions
of interest within the image, computes visual embeddings for
the regions, and calculates the dot product (score) between
the visual embeddings and text embeddings generated by
CLIP. It then returns the highest scoring image regions that
correspond to the input natural language.

For each object in our experiment, we pass a simple
natural language description of the object into ViLD along
with the RGB image taken by the robot, and take as output
the segmentation mask associated with the highest scoring
image region. The mask has the same size as the input RGB
image, and value 1 for every pixel within the proposed region
and 0 otherwise. If ViLD does not find an image region
corresponding to the input language, the segmentation mask
is empty and the observation zs = NULL. Otherwise, we
take the average of the depth value at each pixel in the mask
as well as the coordinates of the mask’s center point and
project it into a location (X,Y ) in the robot’s fan-shaped
sensing region and return (X,Y ) as zs. We also retain the
image region’s score as the confidence score cs.

Without fine-tuning, ViLD achieved a true positive rate
(TPR) of 0.976, a true negative rate (TNR) of 0.118, and
a covariance of 1.825 for the normal distribution over the
desired object’s position on our AI2-THOR dataset. Similar
to other object segmentation methods, ViLD tends to return a
non-empty segmentation mask even when the queried object

https://youtu.be/3Z4XQUQXCsY


is not in the input image.
Experiment results are shown in Figure 6. The settings

are the same as those described in Section V-A. We present
results for fixed values of the ViLD sensor parameters. Next,
we show results with σ, ϵTNR, and both σ & ϵTNR values
set dynamically based on the output confidence score cs. We
map ϵTNR to 0.1 and σ to 1.0 when cs ≥ 0.25, and ϵTNR

to 0.3 and σ to 2.0 otherwise. As ViLD’s TPR is already
high, we decide to keep ϵTPR fixed. Each different version
was tested 3 times and we report the average and standard
error in their performance.

The simulated sensor’s performance is still the upper
bound on the object search task. ViLD’s performance trails
behind our object detector which is fine-tuned for the task.
However, all versions of our system with a dynamic obser-
vation model still significantly outperform the static version.
The version with dynamical σ & ϵTNR achieved an average
task completion rate of 0.578 and SPL of 0.34, compared
to the 0.3 and 0.21 achieved by the static version. These
results demonstrate that our system works seamlessly with
different object detectors and using dynamic observation
models improves object search performance.

VI. CONCLUSION

Our contribution is a novel observation model that uses
the detector’s confidence score to better model the detection
accuracy. This enables us to handle complex language de-
scriptions of objects and perform object search with a real
object detector in realistic environments. In addition, our
method can be easily adapted to new environments without
having to relearn the observation model’s parameters.

Our model only considers 2D space. In future work, we
plan to extend to 3D models, building on Zheng et al. [32]
and Fang et al. [33] to model the 3D structure of objects. This
extension will enable the robot to reason about different 3D
viewpoints and predict the structure of a partially observed
object to gather more views to identify and localize it. We
also plan to specifically train the detector’s output confidence
scores to represent its detection accuracy.

Additionally, our model cannot reason about the likeli-
hood of different views of the same object to improve its
detection/localization of that object. Our current observation
model assumes that each observation is independent, so if
the robot observes the same scene from the same viewpoint,
it will become more and more certain whether the object
is present or not. However, in practice, when viewing an
image from the same viewpoint, a deep-learned detector will
give the same results; the observations are not independent
samples. In the future, we could address this problem by
creating a new observation model based on inverse graphics
and an expected 3D model of the object appearance, enabling
the robot to predict the next best view to maximally reduce
its uncertainty about the object’s location.

Furthermore, we focus on language descriptions of the de-
sired object to generate the object detector and observations.
More complex language instructions that provide information
about the location of the object such as “look in the kitchen”

or “the object is to your right” can be incorporated by directly
updating the agent’s belief about the object’s pose.

Overall we see object search as a central problem for
human-robot interaction, as finding, localizing, and then
grasping an object is a first step for almost anything a person
wants the robot to do in the physical world. Embedding ob-
ject search as a sub-component of a more sophisticated dialog
system can enable the robot to engage in collaborative dialog
with a human partner to interpret complex natural language
commands, find and manipulate objects being referenced,
and fluidly collaborate with a person to meet their needs.
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