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Abstract—Learning a robot motor skill from scratch is
impractically slow; so much so that in practice, learning must
be bootstrapped using a good skill policy obtained from human
demonstration. However, relying on human demonstration nec-
essarily degrades the autonomy of robots that must learn a wide
variety of skills over their operational lifetimes. We propose
using kinematic motion planning as a completely autonomous,
sample efficient way to bootstrap motor skill learning for object
manipulation. We demonstrate the use of motion planners to
bootstrap motor skills in two complex object manipulation sce-
narios with different policy representations: opening a drawer
with a dynamic movement primitive representation, and closing
a microwave door with a deep neural network policy. We also
show how our method can bootstrap a motor skill for the
challenging dynamic task of learning to hit a ball off a tee,
where a kinematic plan based on treating the scene as static is
insufficient to solve the task, but sufficient to bootstrap a more
dynamic policy. In all three cases, our method is competitive
with human-demonstrated initialization, and significantly out-
performs starting with a random policy. This approach enables
robots to to efficiently and autonomously learn motor policies
for dynamic tasks without human demonstration.

I. INTRODUCTION

Robots require motor policies for interacting with objects
in their environment. For example, a robot butler may need a
motor skill that enables it to open a drawer to fetch utensils
for a table, for setting each element of the table, and for
pouring wine. While it is safe to assume that a robot will have
an accurate kinematic model of its own body, it is unlikely to
have a dynamics model of every object it will ever encounter.
This lack of knowledge means that the robot will have to
learn how to manipulate the world around it [20].

Reinforcement learning (RL) provides a framework for
robots to acquire motor policies without explicitly modeling
the unknown world, but model-free RL methods like policy
search [9] have high sample-complexity, and often fail to
learn a reasonable policy from random initialization. Su-
pervised approaches for policy learning like Learning From
Demonstration (LfD) [2] can encode human prior knowledge
by imitating expert examples, but do not support optimization
in new environments. Combining RL with LfD is a powerful
method for reducing the sample complexity of policy search,
and is often used in practice [23, 33, 42, 6]. However,
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(a)
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Fig. 1: A robot using our method to autonomously learn to
close a microwave. (a) The robot uses a motion planner to
generate an initial attempt at closing the microwave door
using a kinematic model of the microwave. The resulting
plan is unable to fully close the microwave door because of
the robot’s limited reach. (b) After bootstrapping a motor
skill with the trajectory from (a), the robot learns a motor
skill that gives the door a push, exploiting its dynamics to
fully close the microwave.

this approach typically requires a human demonstrator for
initialization, which fundamentally limits the autonomy, and
therefore utility, of a robot which may need to acquire a
wide range of motor skills over its operational lifetime.
More recently, model-based control techniques (including
Model Predictive Control [16, 30] and LQR [23]) have been
proposed as exploration methods for policy search; these
methods still require human demonstrations or complete
dynamic models of both the robot and every object in the
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scene.

We propose the use of kinematic motion planning to ini-
tialize motor skill policies. While previous work have lever-
aged sample-based motion planners for learning motor skills
[40, 15, 13], they only focus on either free-space motions
or do not learn a closed-loop controller. To our knowledge,
this is the first use of motion planning to provide initial
demonstrations for learning closed-loop motor skill policies
by leveraging estimated object kinematics. Motion planning
algorithms generate collision-free behavior and generalize to
novel scenarios when the robot has a good kinematic model
of itself and the object it aims to manipulate, making it
useful for tasks like pick-and-place. We show that given a
(potentially approximate, and readily estimated) kinematic
description of the environment and the robot, off-the-shelf
motion planning algorithms can generate feasible (poten-
tially successful but inefficient) initial trajectories (Figure 1a)
to bootstrap an object-manipulation policy that can subse-
quently be optimized using policy search (Figure 1b). This
framework enables the robot to automatically produce its own
demonstrations for effectively learning and refining object
manipulation policies. Our work enables the robot to realize
the benefits of an initial demonstration fully automatically
using kinematic planning, requiring no human involvement.

To evaluate our method, we used two different motor
policy classes (Dynamic Movement Primitives (DMPs) [12]
and deep neural networks [24]). We chose these two dif-
ferent motor policy classes because deep neural networks
are extremely expressive in what policies they can represent,
but are extremely sample inefficient compared to structured
motor primitives like DMPs, and we aim to evaluate how our
method performs in both contexts. Using these motor policy
classes, we compared bootstrapping with motion planning
against learning from scratch in three simulated experiments,
and against human demonstrations in real hardware experi-
ments. Human demonstrations provide a baseline for how
effective these motor policies can do when bootstrapped with
high-quality demonstrations, and learning from scratch pro-
vides a baseline for how difficult the task is without any prior
information about the task.In the first two experiments—
opening a drawer with a dynamic movement primitive repre-
sentation, and closing a microwave door with a deep neural
network policy—we show that motion planning using a
kinematic model produces a reasonable initial policy,although
suboptimal compared to a supervised human demonstration,
that learning adapts to generate efficient, dynamic policies
that exploit the dynamics of the object being manipulated.
We also show how our method can bootstrap a motor skill
for the challenging dynamic task of learning to hit a ball off
a tee, which involves precise and agile movement. In that
case, treating the objects in the scene as static and applying
kinematic motion planning succeeds in generating a policy
that makes contact with the ball, which is sufficient to boot-
strap a more dynamic policy that learns to hit the ball several
feet. Our method is competitive with human-demonstrated

initialization, but requires no human demonstration. It serves
as a suitable starting point for learning, and significantly
outperforms starting with a random policy. This approach
enables robots to efficiently and autonomously learn motor
policies for dynamic tasks without human demonstration.

In summary, our contributions are:
1) A fully-autonomous paradigm for policy search, in

which an agent first uses goal-directed kinematic plan-
ning to devise feasible solution trajectories for itself
and objects in a scene.

2) A novel algorithm that autonomously generates a set
of initial demonstrations for object manipulation via
kinematic planning in object and robot configuration
spaces.

3) An empirical evaluation of this algorithm in which we
employ model-free policy optimization after bootstrap-
ping, demonstrating that our method’s performance is
comparable to human expert demonstration and supe-
rior to random initialization in hardware and simulation
tasks: closing a microwave, opening a drawer, and
hitting a ball off a tee.

II. BACKGROUND

Our goal is to efficiently and autonomously learn robot mo-
tor skill policies. To do so, we develop an approach that uses
kinematic motion planning to generate initial trajectories, fits
a policy to those trajectories using behavioral cloning, and
subsequently optimizes that policy via policy search. We now
briefly describe policy search, policy representations, learning
from demonstration, and motion planning.

A. Policy Search

Policy search methods [9] are a family of model-free
reinforcement learning algorithms that search within a para-
metric class of policies to maximize reward. Formally, given
a Markov Decision Process M = 〈S,A,R, T , γ〉, the
objective of policy search is to maximize the expected return
of the policy πθ:

max
θ

E
M,πθ

[
T∑
t=0

γtrt

]
. (1)

These approaches can learn motor skills through interaction,
and therefore do not require an explicit environment model,
and are typically agnostic to the choice of policy class
(though their success often depends on the policy class
having the right balance of expressiveness and compactness).
However, their model-free nature leads to high sample com-
plexity, which often makes them infeasible to apply directly
to robot learning problems.

Policy representation describes the class of functions used
as the mapping from states to actions. Our approach is ag-
nostic to policy representation; we demonstrate our approach
enables efficient learning using two different common policy
representations: Dynamic Movement Primitives and neural
network controllers.



Dynamic Movement Primitives [12, 32] are a description
of a non-linear second-order differential equation that ex-
hibits attractor dynamics modulated by a learnable forcing
function. DMPs are a popular representation for motor poli-
cies because they are parameter-efficient, can express both
point and limit cycle attractors, enable real-time computation,
and exhibit temporal invariance that does not effect the
attractor landscape. We refer the reader to the work of Ijspeert
et al. [12] for a more formal introduction to DMPs. If we have
n joints we wish to control, we can model control for each
joint independently with n DMPs for each one. Therefore,
the multiple joints of a robot are only coupled through time,
which makes this representation very compact.

Neural network controllers have received significant at-
tention in recent years; they are able to learn hierarchical
feature representations for approximating functions (in our
case, motor skills) operating on high-dimensional input such
as robot sensor data. They are more expressive than restricted
policy classes such as DMPs and can operate directly on
high-dimensional state spaces (e.g. images), yet they typically
exhibit higher sample complexity [24].

Learning from Demonstration methods [2, 34] broadly
consist of two families of approaches that either mimic
(Behavioral Cloning) or generalize (Inverse Reinforcement
Learning) the exemplified behavior. Inverse reinforcement
learning methods seek to estimate a latent reward signal
from a set of demonstrations; we assume a given reward
function, and omit a discussion of inverse reinforcement
learning methods here.

Behavioral cloning methods [3, 31, 11] attempt to directly
learn a policy that reproduces the demonstrated policies.
Given a dataset of expert demonstrations D, the objective
of behavioral cloning is: maxθ

∑
(s,a)∈D πθ(a|s).

These methods often result in policies with undesirable be-
havior in states not observed during demonstrations, though
this can addressed with interactive learning [35, 29, 39]. In
our approach, the existence of a reward function enables the
agent to learn robust behavior in states outside of the initial
training distribution. Moreover, our experiments demonstrate
our approach’s ability to extrapolate beyond suboptimal ini-
tial demonstrations.

Many approaches investigate the incorporation of human-
provided demonstrations into policy search to drastically re-
duce sample complexity via a reasonable initial policy and/or
the integration of demonstrations in the learning objective
[32, 18, 6, 33, 42, 41, 23].

B. Motion Planning

The pose of an articulated rigid body can defined by the
state of each of its movable joints. The space of these poses
is called the configuration space C [27]. Motion planning is
the problem of finding a path (sequence of poses) through
configuration space such that the articulated object is moved
to a desired goal configuration, without encountering a col-
lision.

While there exist many different families of motion plan-
ning algorithms, such as geometric, grid-based, and proba-
bilistic road maps [22], they all operate in a similar fashion:
given a configuration space C and start and goal joint config-
urations q0, q∗ ∈ C, return a valid path of joint configurations
{qt}Tt=0 between the start and end configurations. We focus
on sample-based motion planning approaches.

Probabilistic motion planners provide a principled ap-
proach for quickly generating collision-free robot trajectories.
However, online replanning is expensive, and kinematic mo-
tion planners are only as effective as their kinematic models
are accurate: they generate trajectories directly, and thus
cannot be improved through subsequent interaction and learn-
ing. Furthermore, kinematic planners produce trajectories that
only account for kinematics, not dynamics: they explicitly do
not account for forces involved in motion, such as friction,
inertial forces, motor torques, etc, which are important for
effectively performing contact-rich, dexterous manipulation.

The process of computing the position and orientation p ∈
SE(3) of a link in a kinematic chain for a given joint variable
setting (a point in configuration space) is termed forward
kinematics. Inversely, computing a configuration to attain a
specific end effector pose p is termed inverse kinematics. We
denote the forward kinematics functions p = f(q).

III. BOOTSTRAPPING SKILL LEARNING WITH MOTION
PLANNING

Our methodology is inspired by how humans generate
reasonable first attempts for accomplishing new motor tasks.
When a human wants to learn a motor skill, they do not start
by flailing their arms around in a random fashion, nor do
they require another person to guide their arms through a
demonstration. Instead, they make a rough estimate of how
they want an object to move and then try to manipulate it to
that goal. For example, before being able to drive stick shift,
a human must first learn how to manipulate a gear shifter
for their car. Just by looking at the gear shifter, humans can
decide (1) what they should grab (the shaft), (2) where they
want the shaft to go (positioned in a gear location), and (3)
how the shaft should roughly move throughout the action (at
the intermediate gear positions). Similarly, a robot that has a
good kinematic model of itself, and a reasonable kinematic
model of the object it wishes to manipulate, should be able to
form a motion plan to achieve the effect it wishes to achieve.

That plan may be inadequate in several ways: its kinematic
model may be inaccurate, so the plan does not work; object
dynamics (like the weight of a door, or the friction of a joint)
may matter, and these are not represented in a kinematic
model; and a feasible and collision-free kinematic trajectory
may not actually have the desired effect when executed on a
robot interacting with a real (and possibly novel) object. But
such a solution is a good start; we therefore propose to use
it to bootstrap motor skill learning.

Our approach, outlined in Figure 2, leverages the (partial)
knowledge the robot has about its own body and the object
it is manipulating to bootstrap motor skills. Our method



first assumes access to the configuration space of the robot,
denoted as CR, as well as its inverse kinematics function
f−1R . This assumption is aligned with the fact that the robot
often has an accurate description of its own links and joints
and how they are configured during deployment. However,
the world is comprised of objects with degrees of freedom
that can only be inferred from sensor data. Therefore, our
approach only assumes access to estimated kinematics of the
object to be manipulated, in the form of configuration space
CO and forward kinematics fO. Recent work has shown that
estimating these quantities for novel objects from sensor data
in real environments is feasible [1, 25], though state-of-the-
art estimates still include noise.

Finally, our approach assumes that the task goal can
be defined in terms of kinematic states of the robot and
environment. Examples of such tasks include pick-and-place,
articulated object manipulation, and many instances of tool
use. (Note that this requirement fails to capture reward
functions defined in terms of force, for example exerting a
specific amount of force in a target location.) Such a goal,
together with object and robot kinematic descriptions, enables
us to autonomously generate useful initial trajectories for
policy search.

Our approach is outlined in Algorithm 1, and can broken
down into five main steps: 1) collect initial trajectories(s)
from a motion planner using estimated object kinematics, 2)
fit a policy with these initial trajectories, 3) gather rollouts to
sample rewards for the current policy based on the kinematic
goal, and 4) update the policy parameters based on the actions
and rewards, 5) repeat steps 3-4.

Algorithm 1 Planning for Policy Bootstrapping

1: procedure PPB(CR, f−1R , CO, fO, q
∗
O)

2: D ← ∅
3: for 0 to N do
4: D ← InitialMPDemos(CR, f−1R , CO, fO, q

∗
O) ∪

D
5: θ ← FitPolicy(D0, ..., DN )
6: for 0 to E do
7: T0, .., Tn ← Rollout(π, θ, q∗O)
8: θ ← UpdatePolicy(T1, .., Tn, θ)

Algorithm 2 Initial Motion Plan Demos

1: procedure INITIALMPDEMOS(CR, f−1R , CO, fO, q
∗
O)

2: TO ← MotionPlanner(CO, q∗O)
3: g ← EstimateGrasp(CO,fO)
4: eepath← GraspPath(TO, CO, fO, g)
5: TR ← MotionPlanner(CR, eepath, f−1R )
6: return TR

A. Initial Trajectories from Motion Planner
To fit our policy class, we choose to sample N demon-

strations using a motion planner. Our approach for collecting

Fig. 2: System overview illustrating our proposed frame-
work for generating demonstrations with a motion planner
and subsequently performing policy search. The dashed box
contains the steps from Algorithm 2.

initial demonstrations with a kinematic motion planner is
outlined in Algorithm 2, and proceeds as follows. First, we
use a motion planner to find a path through the object’s
configuration space CO that moves the object from its initial
state to a goal state q∗O using an off-the-shelf motion plan-
ner. This produces a joint trajectory in object configuration
space, TO, which transforms the object from its current joint
configuration to the desired one.

We then estimate a grasp point on the object to designate
the contact point for the robot during manipulation. This
can be done by either generating candidate grasps using
off-the-shelf grasping algorithms [10, 28] or choosing a
part semantically. This produces a local 6D pose, g, that
represents where the robot should grasp the object during
manipulation.

We then use the grasp point g, object joint trajectory TO,
and the object’s forward kinematics fO to generate the series
of 6D Cartesian poses that the grasp point g will go through
as the object proceeds through TO. This produces a series
of 6D Cartesian poses, eepath, which the robot end effector
must go through, assuming a fixed grasp pose to the object.

Finally, we solve for a path in robot joint space that
achieves the end effector path in Cartesian space using off-
the-shelf sample-based motion planners, using the robot’s
inverse kinematics f−1R and the sequence of end-effector
poses eepath.

Note that in our experiments, motion plans were generated
offline, rather than recomputed online based on the object’s
tracked state, but online motion planning is a trivial exten-
sion.

B. Fitting a Policy to a Demonstration

After collecting initial demonstrations from the motion
planner, D, we can bootstrap our motor policy by initializing



(a) Microwave closing (MLP) (b) Drawer opening (DMP) (c) T-ball (DMP)

Fig. 3: Simulation Results. a) Comparison of our method optimized with DAPG against Natural Policy Gradient starting with
a random policy in a microwave closing task using Gaussian multi-layer perception policies. b) Comparison of our method
against PI2-CMA starting with a random policy in a drawer opening task with DMP policies. c) Our method compared with
PI2-CMA with a initially random policy in t-ball with DMP policies. Results are shown as mean and standard error of the
normalized returns aggregated across 20 random seeds.

the parameters to the policy θ. We can initialize a parame-
terized motor policy using any behavioral cloning technique;
in practice, for DMPs, we use Locally Weighted Regression
[36], and for neural networks, we maximize the likelihood
of the demonstration actions under the policy.

C. Policy Search with Kinematic Rewards

To improve the motor policies after bootstrapping, we can
perform policy search based on the given (kinematic) reward
function. Specifically, we choose a number of epochs E
to perform policy search for. For each epoch, we perform
an iteration of policy search by executing the policy and
collecting rewards based on the goal q∗O. We define our
reward functions using estimated object states qO and goal
states q∗O, and add a small action penalty.

IV. EXPERIMENTS

The aim of our evaluation was to test the hypothesis that
motion planning can be used to initialize policies for learning
from demonstration without human input. We tested this
hypothesis in simulation, against learning from scratch, and
on real hardware, against human demonstrations, on three
tasks: microwave-closing, drawer-opening, and t-ball. We
note that we do not show asymptotic performance because
our emphasis is on learning on real hardware from a practical
number of iterations. All the components of the motion plan-
ning problem - state sampler, goal sampler, distance metrics,
etc. - are reused between problems without modification.

A. Simulation Experiments

The aim of our evaluation was to test the hypothesis that
motion planning can be used to initialize policies for learning
from demonstration without human input. We tested this
hypothesis in simulation against learning from scratch, and on
real hardware against human demonstrations, on three tasks:
microwave-closing, drawer-opening, and t-ball.

B. Simulation Experiments

We used PyBullet [8] to simulate an environment for
our object manipulation experiments. We used URDFs to
instantiate a simulated 7DoF KUKA LBR iiwa7 arm and
the objects to be manipulated, which gave us ground-truth
knowledge of the robot and object kinematics. For all our
simulated experiments, we compared implementations of our
method against starting with a random policy.

For all three tasks, the state was represented as st =
[qR, qO]

T where qR denotes robot configuration and qO
denotes object configuration. The action space A was com-
manded joint velocity for each of the 7 motors. The reward
at each timestep rt was given as:

rt = −c ||q∗O − qO||22 − aTt Rat, (2)

where qO denotes the object state at time t, q∗O denotes
desired object state, and at denotes the agent’s action. We
set c = 60 and R = I × 0.001 for all experiments. As such,
maximum reward is achieved when the object is in the desired
configuration, and the robot is at rest.

Our first simulated task was to close a microwave door,
which consisted of three parts: a base, a door, and a handle.
The pose of the handle was used for the EstimateGrasp
method in Algorithm 2. The robot was placed within reaching
distance of the handle when the microwave door was in an
open position, but was too far to reach the handle in its closed
configuration. Thus, the agent was forced to push the door
with enough velocity to close it. We used Gaussian policies
represented as multi-layer perceptrons with two hidden layers
of sizes (32,32) in this experiment. The randomly initialized
policy was optimized with natural policy gradient [17]. Ten
demonstrations were generated by perturbing the start state
and initial kinematic plan with Gaussian noise. The behavior
cloning was performed by maximizing likelihood over the
demonstration dataset for 10 epochs. Our pretrained policy
was optimized using Demo Augmented Policy Gradient [33],



Fig. 4: Hardware experiment comparing our initialization
scheme with human demonstration. Results are shown as
mean and standard error, aggregated across three random
seeds.

which essentially adds the behavior cloning loss to the natural
policy gradient loss, annealing it over time. This ensures
that the agent remains close to the demonstrations early
in learning, but is free to optimize reward exclusively as
learning progresses. Results are shown in Figure 3a.

The second simulated task was to open a drawer. This
task required the agent to grasp the drawer’s handle and
pull the drawer open. Again, the pose of the object’s handle
was used for EstimateGrasp method in our algorithm. In this
experiment, we used DMP policies. The weights, goals, and
speed parameters of the policies were optimized using PI2-
CMA [38]. We used 32 basis functions for each of the DMPs.
The pretrained policy was initialized using Locally Weighted
Regression (LWR) [36] with a single demonstration. The
results of this experiment are shown in Figure 3b.

The third simulated task was to hit a ball off a tee. The ball
started at rest on top of the tee. The pose of the ball was used
in the EstimateGrasp method. The object state was defined
as the object’s y position relative to its initial pose. This
experiment again used DMP policies initialized with LWR
and optimized with PI2-CMA. The results of this experiment
are visualized in Figure 3c.

The results of our simulated tasks can be found in Figure
3. Across all three tasks, we observe that policies initialized
with our method dramatically outperform starting learning
with a random policy. This confirms our hypothesis that using
motion planning to generate demonstrations significantly
speeds the acquisition of motor skills in challenging tasks
like articulated object manipulation and t-ball.

C. Real-world Experiments

For all our real-world experiments, we used a 7DoF Jaco
arm [4] to manipulate objects (Figure 1). We used ROS
and MoveIt![7] as the interface between the motion planner

(a) Motion Plan Demonstration (b) Bootstrapped from (a)

Fig. 5: Real-world Ball Hitting Images comparing an
autonomous motion plan demonstration generated from our
method vs. a bootstrapped motor skill initialized with that
demonstration for a real-world robot hitting a ball off a tee
as far as possible. Qualitatively, the bootstrapped motor skill
outperforms the initial demonstration by learning to take
advantage of the latent tasks dynamics. Videos can be found
in our supplemental video. (a) A demonstration provided
by the motion planner, which moves linearly towards the
ball (b) A motor skill bootstrapped by the motion planner
demonstration that learns a agile swooping motion to take
advantage of the balls dynamics.

(RRT* [19] in our experiments) and robot hardware. For all
real-world experiments, we compared implementations of our
method against bootstrapping with a human demonstration,
which we supplied. We acknowledge this potential bias in
expert trajectories, and qualify our decision by only training
on human demonstrations that at least accomplished the task.
To collect human demonstrations, we had an expert human
teleoperate the robot with joystick control to perform the task.
For all tasks, the state space, action space, and reward were
defined in the same way as in our simulated results (Section
IV-B). Both experiments used DMP policies initialized with
LWR [36] and optimized with PI2-CMA [38] with 10 basis
functions for each of the DMPs.

Our first real-world task was to close a microwave door,
similar to the one described in our simulated domain (Section
IV-B). As in the simulated microwave task, we used the pose
of the handle for the EstimateGrasp method in Algorithm
2, and also the robot was similarly placed such that it was
forced to push the door with enough velocity to close. We
placed an AR tag on the front-face of the microwave to track
the microwave’s state using a Kinect2. Results are shown
in Figure 4. We observe that the human demonstration is
better than the one produced by the motion planner, which
we credit to the fact that the motion of the door was heavily
influenced by the dynamics of the revolute joint which
the motion planner did not account for. Nonetheless, both
policies converge to a similar final performance, with our
method converging slightly faster. Note the importance of the
policy search phase: the motion planner alone is insufficient
for performing the task efficiently.

Our second real-world task was to hit a ball off a tee as
far as possible (Figure 5). Similar to our simulated task, the
ball started at rest on top of the tee. The pose of the ball
was used in the EstimateGrasp method. The object state was
defined as the object’s y position relative to its initial pose.



We placed scotchlite-reflective tape on the surface of the ball
and conducted our experiments within an OptiTrack motion-
capture cage to track the object pose. We observe that when
using a motion planner to hit the ball, it moves the bat in
a linear motion to make contact, therefore transferring only
horizontal motion to the ball. We qualitatively observe that
during policy search, the robot learns a dynamic policy that
accounts for the dynamics of the ball by applying force under
the ball to “scoop” the ball upwards and forwards.

V. RELATED WORK

To our knowledge, our method is the first to use an
object’s estimated kinematics in conjunction with a known
robot dynamics model to bootstrap motor policy learning,
and we discover and discuss important problems that are
only introduced when leveraging policy-learning algorithms,
behavioral-cloning, and motion planning algorithms to do so.
In this section, we discuss relevant approaches to motor skill
learning.

Recently, Model-Predictive Control (MPC) has been used
in the context of imitation learning and reinforcement learn-
ing to address the high sample complexity of policy search
[16, 30]. These approaches require a priori object dynamics,
or human demonstrations to fit learned models; in constrast,
our approach requires only object kinematics, which are
much more readily estimated from visual data at runtime
[1, 25]. As such, our approaches enables the learning of
manipulation skills to be more autonomous than existing
MPC-based methods. Tosun et al. [40] proposed a neural
network model for generating trajectories from images, using
a motion planner during training to enable the robot to gener-
ate a trajectory with a single forward pass at runtime. While
this approach uses a motion planner for behavior cloning, it
stops short of optimization to improve the resulting policy.
In constrast, our method uses object kinematics to produce
initial trajectories, while Tosun et al. [40] only use the robot’s
kinematic model, which is insufficient when the task is to
manipulate an object to a specific joint configuration.

While classic robot motor learning papers [3] leverage the
known kinodynamics of the robot, they do not discuss kine-
matics of external objects or grasp candidates to bootstrap
motor policies for object manipulation. We emphasize that
we cannot form dynamic plans in the problem setting we are
interested in: objects with unknown a priori dynamics.

Kurenkov et al. [21] proposed training an initially random
RL policy with an ensemble of task-specific, hand-designed
heuristics. This improves learning but the initial policy is
still random, yielding potentially unsafe behavior on real
hardware, and delaying convergence to a satisfying policy. By
contrast, we choose to initialize the policy with demonstra-
tions from a kinematic planner, ensuring feasibility, safety,
and rapid learning. Moreover, we argue that motion planning
is the principled heuristic to use to accelerate learning, as
it is capable of expressing manually programmed heuristics
like reaching and pulling. Finally, our approach can use the

existing estimated object kinematics to provide a principled
reward signal for model-free reinforcement learning.

Recently, residual reinforcement learning approaches have
been developed which learn a policy superimposed on
hand-designed or model-predictive controllers [37, 14]. Our
method is compatible with these approaches, where demon-
strations from the motion planner can be used as a base policy
on top of which a residual policy can be learned based on
kinematic rewards. These methods typically suffer from the
same limitations as MPC-based methods mentioned above.

Guided Policy Search (GPS) [23] uses LQR to guide
policy search into high-reward regions of the state-space. The
models employed are fundamentally local approximations,
and thus would benefit greatly from a wealth of suboptimal
demonstrations from the outset (as made evident by Chebotar
et al. [5]). GPS is one of the state-of-the-art algorithms we
expect to be used within our framework as the policy search
implementation (Section III-C). A critical distinction between
our work and GPS is the notion of planning trajectories
in object configuration spaces and reasoning about grasp
candidates to achieve a desired manipulation. This is done
using information available apriori, and thus is immediately
capable of generating high-value policies, whereas GPS is
estimating dynamics models given observed data (obtained
either from demonstration or random initialization). In the
absence of a human demonstrator, our method would provide
far more useful data at the outset of learning than running
a naively initialized linear-gaussian controller (as evidenced
by our comparisons to random initialization). The ideas
proposed in our paper are distinct from those put forth in
GPS: we present a method for obtaining demonstrations
under certain conditions in the absence of a human.

Most similar to our line of work are those that use
sample-based motion planners for improved policy learning.
Jurgenson and Tamar [15] harness the power of reinforcement
learning for neural motion planners by proposing an augmen-
tation of Deep Deterministic Policy Gradient (DDPG) [26]
that uses the known robot dynamics to leverage sampling
methods like RRT* to reduce variance in the actor update
and provide off-policy exploratory behavior for the replay
buffer. However, Jurgenson and Tamar [15] are only able to
address domains where they can assume good estimates of
the dynamics model, such as producing free-space motions
to avoid obstacles. Our setting, in contrast, focuses on object
manipulation, where dynamics are not readily available, but
are critical for learning good policies. Jiang et al. [13] address
learning to improve plans produced by a motion planner,
but do not bootstrap closed-loop policies. Motion planners
aren’t expressive enough to leverage the dynamics in object-
manipulation tasks, especially in the presence of unknown
dynamics, and traditionally are unable to handle perceptual
data like RGB images. Our method, on the other hand,
enables motion planning to bootstrap policies that are more
expressive than the original planner.



VI. CONCLUSION
We have presented a method that uses kinematic motion

planning to bootstrap robot motor policies. By assuming
access to a potentially noisy description of the object kine-
matics, we are able to autonomously generate initial demon-
strations that perform as well as human demonstrations, but
do not require a human, resulting in a practical method for
autonomous motor skill learning.

Our methodology is agnostic to the motion planner, motor
policy class, and policy search algorithm, making it a widely
applicable paradigm for learning robot motor policies. We
demonstrate the power of our methodology by bootstrapping
different policy classes with demonstrations from humans and
a motion planner, and learn motor policies for three dynamic
manipulation tasks: closing a microwave door, opening a
drawer, and hitting a ball off a tee. Our framework is the
first to enable robots to autonomously bootstrap and improve
motor policies with model-free reinforcement learning using
only a partially-known kinematic model of the environment.
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