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Abstract—We present a decision-theoretic model and robot
system that interprets multimodal human communication to
disambiguate item references by asking questions via a mixed
reality (MR) interface. Existing approaches have either chosen
to use physical behaviors, like pointing and eye gaze, or virtual
behaviors, like mixed reality. However, there is a gap of research
on how MR compares to physical actions for reducing robot
uncertainty. We test the hypothesis that virtual deictic gestures
are better for human-robot interaction (HRI) than physical
behaviors. To test this hypothesis, we propose the Physio-Virtual
Deixis Partially Observable Markov Decision Process (PVD-
POMDP), which interprets multimodal observations (speech,
eye gaze, and pointing gestures) from the human and decides
when and how to ask questions (either via physical or virtual
deictic gestures) in order to recover from failure states and cope
with sensor noise. We conducted a between-subjects user study
with 80 participants distributed across three conditions of robot
communication: no feedback control, physical feedback, and
MR feedback. We tested performance of each condition with
objective measures (accuracy, time), as well as evaluated user
experience with subjective measures (usability, trust, workload).
We found the MR feedback condition was 10% more accurate
than the physical condition and a speedup of 160%. We also
found that the feedback conditions signicantly outperformed
the no feedback condition in all subjective metrics.

I. INTRODUCTION

Communicating human knowledge and intent to robots

is essential for successful human-robot interaction (HRI).

For example, when a surgeon says “hand me the scalpel,”

it is crucial that the assistive robot hand over the correct

utensil. In order to efciently collaborate, humans intuitively

communicate through noisy modalities such as language,

gesture, and eye gaze. Failures in communication, and thus

collaboration, occur when there is mismatch between two

agents’ mental states.

Question-asking allows a robot to acquire information

that targets its uncertainty, facilitating recovery from failure

states. However, all question-asking modalities have trade-

offs, making choosing which to use an important and context-

dependent decision. For example, for robots with “real” eyes

or pan/tilt screens, looking requires fewer joints to move

less distance compared to pointing, decreasing the speed of

the referential action. However, eye gaze is inherently more

difcult to interpret.

On the other hand, Mixed Reality Head-Mounted Dis-

plays (MR-HMD), which have been shown to reduce mental

workload in HRI [16], can indicate items quickly, are very

accurate given proper calibration, and are independent of

Fig. 1: An example interaction. In (a), the participant rst

uses speech, pointing, and eye gaze to ask for the red marker.

Then the participant experiences one of three conditions:

In (b), the no feedback control condition, the robot waits

for more information before choosing. In (c), the physical

feedback condition, the robot asks about the red marker via

pointing. In (d), mixed reality feedback condition, the robot

asks about the red marker via highlighting with a 3D sphere

in mixed reality.

the physical robot. However, visualizations may distract the

user’s attention more than a typical pointing or looking

action. Furthermore, MR technology is still new, and users

may prefer to instead interact with a robot that performs

physical actions. We aim to close the gap of research on

how MR compares to physical actions for reducing robot

uncertainty.

This work investigates how physical and visualization-

based question-asking compare for reducing robot uncer-

tainty under varying levels of ambiguity (Fig. 1). To do this,

we rst model our problem as a POMDP, termed the Physio-

Virtual Deixis POMDP (PVD-POMDP), that observes a

human’s speech, gestures, and eye gaze, and decides when

to ask questions (to increase accuracy) and when to decide

to choose the item (to decrease interaction time). Then, we

conduct a between-subjects user study, where 80 participants

interact with a robot in an item-fetching task. Participants

experience one of three different conditions of our PVD-
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POMDP: a no feedback control condition, a physical feed-

back condition, or a mixed reality feedback condition. Our

results show that our mixed reality model signicantly out-

performs the physical and no feedback models in both speed

and accuracy, while also achieving the highest usability, task

load, and trust scores.

II. RELATED WORK

Previous research has investigated different communica-

tion modalities between robots and users, identifying the

costs and benets of each. A large amount of work has

investigated physical robot actions used to reference objects

to communicate with a human user, with two effective modes

being robot eye gaze and robot pointing. Other research has

opted instead to utilize a visualization-based approach, with

visualizations displayed through 2D monitors, augmented

reality, and mixed reality.

Eyes tend to move very quickly, and are used to both col-

lect and communicate information. This makes eye-tracking

a natural way to ground the references of other agents

[1, 2, 7, 8, 12, 14, 15]. However, it is often difcult to

perceive where an agent is looking, especially compared

to pointing. Pointing is another natural deictic gesture that

requires more effort but is easier to interpret. Admoni et al.

[1] show that gaze and gesture are good at distinguishing

between locationally unambiguous (far apart) items, while

speech is good at distinguishing between visually unam-

biguous (different looking) items. However, related works

[1, 2, 7, 8, 12, 14, 15] do not compare using eye gaze

and pointing gestures to visualizations for reducing robot

uncertainty.

Language has also been shown to be an effective means of

symbol grounding, as in Chai et al. [5]. Their system enables

users to use natural language to describe objects in the shared

environment in order to ground them. The authors use a NAO

robot with pointing and language to ask questions to clarify

the human’s references. Having the robot act in order to share

its uncertainty to the human was shown to be important for

establishing common ground. Like their work, we investigate

pointing and language for disambiguation. However, we also

investigate eye gaze, visualization, and question asking for

mediating human-robot interaction.

Shridhar and Hsu [17] present an end-to-end system,

INGRESS, to interpret unconstrained natural language com-

mands for unconstrained object class references and perform

question-asking. Their system outperforms state-of-the-art

baselines, though they recognize that integration of nonverbal

commands would help with requiring less complicated verbal

references. Our approach, in contrast, uses a relatively simple

language model, but also incorporates human gesture and eye

gaze. Our model also allows the agent to ask questions via

gesture, eye gaze, and visualizations for disambiguation.

Several related works have studied the usage of visual

interfaces for improving communication in human-robot in-

teractions [13, 18, 22, 23]. Sibirtseva et al. [18] perform

a comparison of different visualization techniques for robot

question-asking in an item-fetching domain. The authors use

a semi-wizarded system to compare a 2D monitor interface,

an augmented reality interface (xed overhead projector),

and a mixed reality interface for highlighting tabletop items.

The authors found the mixed reality interface most engaging,

but augmented reality most accurate and most preferred.

They posit that technical limitations were to blame for the

poor performance of MR. Our approach, in contrast, directly

compares MR visualization to physical behaviors such as

pointing and eye gaze. We do not compare to projector-

based systems because they do not support eye-gaze tracking,

whereas MR-HMDs do.

III. BACKGROUND

MDPs, POMDPs, and the FETCH-POMDP are mathe-

matical frameworks for modeling decision making. As these

models form the base of our approach, we describe them

further here.

A. Markov Decision Process

A Markov Decision Process (MDP) [3] is formalized as

a tuple (S,A, T,R, γ). S is the set of states the agent can

be in. A is the set of actions that the agent can take. T

is the transition function that models the probability that

performing an action a in state s lands the agent in state

s′: T (s, a, s′) = P (s′|s, a). R is the reward function that

models cost of performing an action a in state: R(a, s). γ is

the discount factor for each subsequent action in the expected

reward: V (s) =


∞

t=0 γ
tRt where Rt is the reward obtained

at time t.

B. Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process

(POMDP) [11] is a generalization of an MDP in which the

agent does not know what state it is in, but instead maintains

a belief distribution over possible states. More formally, a

POMDP is dened as a tuple (S,A, T,R,Ω, O, γ), where all
the previous denitions from MDP still apply, Ω is the set of

observations, and O is the observation function that models

the the probability of receiving observation o if the agent

takes action a and lands in state s: O(o, a, s) = P (o | a, s).

C. FETCH-POMDP

Whitney et al. [21] formulate a similar object-fetching task

to ours as a POMDP called the FEedback To Collabora-

tive Handoff Partially Observable Markov Decision Process

(FETCH-POMDP). In the FETCH-POMDP, users are able

use speech and pointing gestures to reference items on the

table, and the robot is able to either point to an item to ask

whether it was the desired item, wait, or pick an item that it

believes is the desired item.

The authors evaluate the speed and accuracy of the

FETCH-POMDP against a model with a xed question-

asking policy and a model that never asked questions, for

both ambiguous and unambiguous settings. By asking ques-

tions only when it is confused, the FETCH-POMDP [21]

increases interaction speed and accuracy compared to xed
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Fig. 2: A graphical model of our PVD-POMDP. Hidden

variables are white, observed variables are gray (See Section

IV-A for variable denitions).

question-asking policies across ambiguous and unambiguous

contexts. However, the FETCH-POMDP is limited to only

pointing gestures for question asking, and does not use eye

gaze or MR visualizations. We hypothesize that MR visual-

izations are an objectively and subjectively better interface for

question-asking in an item disambiguation task than physical

behaviors.

IV. TECHNICAL APPROACH

We take a decision-theoretic approach to the item fetching

problem by modeling our domain as a POMDP. This allows

our robot to intelligently balance the informativeness and

speed of its actions and gracefully handle its uncertainty. The

Physio-Virtual Deixis Partially Observable Markov Decision

Process, or PVD-POMDP, has as observations the speech,

pointing gestures, and eye gaze of the user. Depending on

the condition, the model enables our robot to look at, point

to, and/or virtually highlight an item to ask if it is the

desired item. The general intuition of our actions is that robot

pointing is slower because the robot arm must move, but can

be interpreted easily. Robot looking is faster because only

the face and screen move, but is more difcult to interpret

than pointing, especially when items are close together. MR

visualizations are just as interpretable as pointing gestures

because MR isolates items via highlighting, yet is faster

to perform than robot looking because it requires no robot

motion.

A. Model Denition

The PVD-POMDP1 (Physio-Virtual Deixis POMDP) is

given by components 〈I, S, A, T,R,Ω, O, γ〉

• I is the list of all items on the table. Each item i ∈ I has

a known location (x, y, z) and set of associated words

i.vocab.

• S: The state is (id, q). id ∈ I is the human’s desired

item, which is hidden. q is the agent’s last question,

which is known. q is initialized to null.

• A: We divide the actions into two types: non-question-

asking and question-asking. The non-question-asking

actions are wait and pick(i) for i ∈ I . A pick action

ends the interaction. The question-asking actions are

point(i), look(i), and highlight(i) for i ∈ I . look is

1See supplemental video at https://www.youtube.com/watch?v=
lXFv747b-Uc

cheaper but less accurate than point, while highlight is

cheaper than look and as accurate as point. However,

highlight requires a MR-HMD for the user, while look

and point do not require additional hardware than the

robot itself.

• T (s, a, s′): id remains constant throughout an interac-

tion. q is initialized to null and updated to a whenever

a question-asking action a is taken.

• R(s, a): The agent receives large positive and neg-

ative rewards for picking the right and wrong item

respectively, and small negative rewards for all other

actions. In decreasing magnitude of reward, the non-

pick actions are point, look, highlight, wait. We calibrate

these rewards roughly accordingly to how long each of

the non-pick actions take: physical actions like point

and look require physical robot behavior, thus take more

time. highlight only needs to visualize on the MR-HMD,

thus costs less. wait takes very little time.

• Ω: Each observation is composed of language, gaze, and

gesture. Language is subdivided into base and response

utterances. The response utterance can be positive, neg-

ative, or null.

• O(o, s, a): The observation function can be factored into

base utterance, response utterance, gaze, and gesture

components. It is explained in detail in the Observation

Model section below.

• γ: The discount factor is γ = 0.99.

B. Observation Model

Each observation o is a quadruple of base utterance lb,

response utterance lr, gesture g, and eye gaze e. The com-

ponents are assumed conditionally independent of each other

given the state s (see Fig. 2):

Pr(o | s) = Pr(lb | s) Pr(lr | s) Pr(g | s) Pr(e | s) (1)

Following Goodman and Stuhlmüller [6], we assume

each base utterance lb has a literal interpretation probability

Prlex(id | lb) and that the speaker chooses their utterance by

soft-max optimizing the probability that the listener infers

the correct desired item from their base utterance. Each base

utterance is interpreted as a vector lb whose ith component

lb(i) is the number of words in the utterance that refer to

the ith object. Let U be the set of base utterance vectors and

|lb| =


i∈I lb(i). Then we set:

Prlex(id | lb) =















(1− α)lb(i) + α

(1− α)|lb|+ α|I|
|lb| > 0

1

|I|
|lb| = 0

(2)

where α = 0.02 is a noise parameter. Let pl = 0.1 be the

probability a base utterance is made and θ = 15 the soft-max

parameter. Then:

Pr(lb | id) =



















pl
eθPrlex(id|lb)

∑

lb∈U

eθPrlex(id|lb)
|lb| > 0

1− pl |lb| = 0

(3)
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When planning, we assume each base utterance will have at

most three words to lower computation time.

The equation for Pr(lr | s, a) has three components.

The probability of receiving a response is pr = 0.6. The
probability that the human interprets the agent’s question as

asking about i if the agent is asking about j is Pr∗(i | j),
which is dened in Equation 4 for point and highlight, and in

Equation 6 for look. The probability that the human responds

correctly based on their interpretation is prc = 0.999.
The human is assumed to always understand a point

or highlight action, so the interpretation probabilities for

pointing and highlighting are:

Prp(i | j) = Prh(i | j) =

{

1 i = j

0 i 6= j
(4)

The interpretation probability for the look action uses

a modied version of the model from Admoni et al. [1].

While humans have trouble identifying the exact angle of a

look, they are very good at determining the general direction

because of the robot’s head motion, so we assume the human

never mistakes a leftward look for a rightward look and vice

versa.

Let ang(i, j) be the angle between item i and item j

relative to the robot’s face, di the distance from the agent’s

face to item i, and w0 = 6, w1 = 6 noise parameters. Let

M(i, j) represent whether items i and j are on the same side

of the robot:

M(i, j) =

{

1 i and j are on the same side of the robot

0 otherwise

(5)

Then the probability Prl(i | j) that a human thinks the robot

is looking at i when they are in fact looking at j is:

Prl(i | j) ∝
1

di(1 + w0|ang(i, j)|)w1

M(i, j) (6)

Suppose the robot asked about item i using point or

highlight. Then probability of receiving a response lr is:

Pr(lr | s) =











prprc lr = yes

pr(1− prc) lr = no

1− pr lr = null

(7)

Let Prl(i) denote Prl(i | i). If the robot asked about item i

using look, then the probability of receiving a response lr is:

Pr(lr | s) =
{

pr(Prl(i)prc + (1− Prl(i))(1− prc)) lr = yes

pr(Prl(i)(1− prc) + (1− Prl(i))prc) lr = no
(8)

Human eye gaze e is modeled as a vector from the user’s

head to the point they are looking at. Gesture g is modeled as

a vector from the user’s the hand to the point they are pointing

at. Angles are measured relative to the vector ending at the

desired item. The probabilities of receiving a gaze or gesture

are pe = 0.8 and pg = 0.3 respectively. When present, gaze

and gesture are assumed to come from Gaussian distributions

with mean 0 error and with and standard deviations σe =
0.02 and σg = 0.06 radians respectively:

Pr(g | id) =

{

pgN (θid ; 0,σ
2
g) g 6= null

1− pg g = null
(9)

Pr(e | id) =

{

peN (θid ; 0,σ
2
e) e 6= null

1− pe e = null
(10)

A human’s gaze is attracted to referenced items, so the

robot ignores gaze observations for 1 second after asking

a question.

Due to the differing noise models combined with a

decision-theoretic approach, the robot considers pointing to

be more costly than looking, and thus will only point at an

item when the increased accuracy is worth the cost. Roughly

speaking, the robot will look at an item if it is far enough

away from other items that looking is unambiguous and will

point at an item when it is in close proximity to other items.

C. Implementation Details

In order to observe the human’s speech, we use Google’s

Cloud Speech to transcribe the user’s speech. For gesture

tracking, we use the Microsoft Kinect v2 in conjunction with

OpenNI’s skeleton tracker software, and calculate pointing

vectors from the user’s head to hand. Lastly, we use the

Magic Leap One, a commercially avaliable MR-HMD, to

track eye gaze.

We used Perseus, an ofine POMDP planner from Spaan

and Vlassis [19], as our planning algorithm. It took 6,

5191, and 724 seconds to train the control, physical, and

mixed reality paradigms, respectively. Note that this training

happens ofine before the interaction begins, which enables

the robot to act in real-time at run-time. Since human gesture

and gaze are analogous, we planned using only gaze, but

utilized both gaze and gesture during interaction.

For the user to understand which item the robot is asking

about, the visualization presented to the user must isolate the

referenced item from all the others. Our choice was to use a

3D sphere visualized over the referenced item. A sphere is the

only fully rotationally invariant 3D shape, so it can be viewed

equally well from all angles. We found that during our pilot

studies (Section VI), users were less distracted when they

moved, and generally looked directly at the item. We found

3D spheres to be the most highly regarded design in our pilot

studies, and chose it as our nal visualization method.

V. EVALUATION

To evaluate our hypothesis, we designed an evaluation task

where the robot disambiguated what item the human referred

to as quickly and accurately as possible (dened in Section

V-C) from an array of potential objects on a table in front

of the robot. The aim of our evaluation was to investigate

how communicating questions via physical robot behaviors,

like looking and pointing, compare to communicating those

questions via mixed reality visualizations.
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We devised a user study to compare three conditions of

communication modalities. In the no feedback control con-

dition, the robot did not ask any questions and only decided

to pick an item when it was sufciently condent based on

observations from the human (i.e: robot did not interact with

the human except for when it picked an item). In the physical

feedback condition, the robot was able to ask questions by

moving, either using gesture or looking to reference items. In

the mixed reality (MR) feedback condition, the robot was able

to ask questions by visualizing a sphere over the referenced

item in the user’s mixed reality headset. We posited two

hypotheses (H1 and H2) about the objective measures, and

two hypotheses (H3 and H4) about the subjective measures:

• H1: The feedback conditions (physical and MR) will

outperform the no feedback condition (control), as

demonstrated by: (a) greater trial accuracy and (b) lower

trial time.

• H2: The MR feedback condition will outperform the

physical feedback condition, as demonstrated by: (a)

greater trial accuracy and (b) lower trial time.

• H3: Users in the feedback conditions (physical and MR)

will have a better user experience than users in the no

feedback condition (control), as demonstrated by: (a)

greater usability scores, (b) greater trust scores, and (c)

decreased workload scores.

• H4: Users in the MR feedback condition will have

a better user experience than users in the physical

feedback condition, as demonstrated by: (a) greater us-

ability scores, (b) greater trust scores, and (c) decreased

workload scores.

A. Physical Setup

The physical setup of our experiment can be seen in Fig.

1. For the interaction, the human stood 2 meters away from

a table with six items on it, and the robot stood on the

other side of the table. Our item set consisted of three red

expo markers, two glass cups, and one yellow rubber duck.

The expo markers and glasses were identical except for their

different spatial positions. The items were placed on the table

in three groups of two, with the rubber duck and a marker

on the far left, the two glasses in the middle, and the last two

markers on the far right. The distances between the objects,

from left to right, were 10cm, 40cm, 15cm, 45cm, and 10cm.

We chose the items and their locations to represent visually

and spatially ambiguous scenarios. Specically, the leftmost

group is least ambiguous, as the duck is a unique item, and

the marker is very far from its identical copies. The middle

group is more ambiguous, as the two glasses are identical,

and are somewhat close together. The rightmost group is most

ambiguous, as the two markers are identical, and very close

together.

The Microsoft Kinect v2 sensor was placed on top of the

robot and calibrated to accurately track the pose of the human

relative to the robot. The user wore the Magic Leap One

HMD and headphones with a microphone in order to track

the user’s eye gaze and speech, respectively. The user heard

the robot’s question-asking through the headphones.

B. Experimental Procedure

Participants were randomly assigned to one of the three

between-subjects conditions (no feedback control condition,

physical feedback condition, MR feedback condition). After

reading the IRB approved consent procedure, we calibrated

the Magic Leap One for each user’s eye gaze by using the

supplied visual calibration program. We then went through

the instructions for the study, and informed users there would

be 18 trials with the robot. For each trial, the user was told

an item number associated with an object and instructed

to use speech, gesture, and eye gaze to reference the item

to the robot in a clear and natural manner. If the user

was in a condition with feedback, the user was told what

feedback to expect from the robot (i.e., either physical or

MR visualization-based question-asking). The experimenter

then counted down from three to start the trial, at which point

the user could reference the item; each trial ended when the

robot selected an item or 30 seconds had passed. Every user

was asked to reference each of the six items three times,

totaling 18 trials. The order of items was randomly shufed

for each user. In each of the trials, we recorded the interaction

time and whether the correct item was selected or not. After

all 18 trials were completed, the user completed a series of

subjective questionnaires.

C. Objective Measures

The performance of the robot in the task was evaluated

using two objective measures, accuracy and time.

1) Accuracy: Accuracy was calculated as the number of

correct items selected by the robot divided by the total

number of trials (18 trials). We treated a trial timeout as

an incorrect pick when calculating accuracy.

2) Time: Each trial began when the robot heard the user

speak and ended when the robot picked an item; if the robot

did not pick an item, the trial timed out after a 30 second

period. The time measure was calculated as the average time

of the interaction across all 18 trials.

D. Subjective Measures

Participants completed a series of three questionnaires to

evaluate the success of the interaction on the basis of the

perceived usability of the system, the trust in the robot on

the task, and the task load of the interaction.

1) System Usability Scale: The System Usability Scale

(SUS) is a versatile tool for assessing system usability

developed by Brooke [4]. We use the SUS to evaluate user

perceptions of usability of the robot system. The SUS con-

sists of 10 Likert items, with usability scores for participants

calculated by following the scoring guidelines for the SUS.

2) Multi-Dimensional-Measure of Trust: The Multi-

Dimensional-Measure of Trust (MDMT) was developed by

Ullman and Malle [20] to assess human trust in robots across

tasks and domains. There are two superordinate dimensions

of the MDMT: moral trust and capacity trust. For this study,

we were interested in user evaluations of capacity trust in the

robot. We used two of the four subscales from the MDMT:
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(a) Accuracy (b) Time (c) SUS (d) MDMT (e) RTLX

Fig. 3: Our objective measures (a) Accuracy and (b) Time, and subjective measures (c) SUS, (d) MDMT, and (e) RTLX,

shown for all three between-subjects conditions. Error bars represent stand error.

reliable (reliable, predictable, someone you can count on,

consistent) and capable (capable, skilled, competent, metic-

ulous). The MDMT consists of rating scales for each item

from 0, “Not at all,” to 7, “Very,” with an option for “Does

Not Fit.” We calculated capacity scores for participants by

averaging across ratings on these eight items.

3) NASA Task Load Index: The NASA Task Load Index

(NASA-TLX) is an effective measure used across a variety of

domains for the assessment of perceived workload [10]. We

use the raw version of the NASA-TLX, often referred to as

the RTLX, which is less burdensome than the original version

and has been successfully utilized in numerous research

studies [9]. We use the RTLX to evaluate the user workload

associated with interacting with the robot system. The RTLX

consists of six rating scales on different dimensions, with

each scale spanning 0-100 in 5-point increments. We calcu-

lated workload scores for participants by averaging across

ratings on all six scales.

VI. RESULTS

Participants were recruited from the authors’ academic in-

stitution, with participants required to be at least 18 years old

and able to see without glasses (contacts were acceptable).

We rst conducted a pilot study with 10 participants to test

the system. We then conducted the main study with a total of

83 participants. Three participants were excluded from data

analysis (two for failure to follow study instructions, and one

due to system technical error). Analysis was performed on

the data from 80 participants: 27 in the no feedback control

condition, 26 in the physical feedback condition, 27 in MR

feedback condition. Please see Fig. 3 and Table I for data.

Acc. Time SUS MDMT RTLX

CTRL .72±.20 7.59±4.05s 65.74±20.34 4.45±1.33 29.88±16.74
PHYS .82±.17 8.10±2.86s 73.27±15.66 4.90±0.99 24.13±12.84
MR .93±.07 5.07±1.25s 76.76±12.71 5.40±0.85 19.01±11.37

TABLE I: A table of the means and standard deviations of all

ve of our metrics for all three conditions (CTRL = Control,

P = Physical, MR = Mixed Reality). Bolded numbers are the

best for that metric.

A. Objective Measures

The two objective dependent measures (accuracy, time)

were correlated (p < .001) with each other, r = -.68. This

correlation suggests that as accuracy increased, time for

the task decreased. The correlation between the dependent

variables also indicates that a multivariate analysis of the

data is warranted to account for the relationship between the

dependent variables.

A MANOVA was conducted using a pair of a priori

orthogonal Helmert contrasts in order to test hypothesis H1

(that the feedback conditions would outperform the no feed-

back condition) and hypothesis H2 (that the MR feedback

condition would outperform the physical feedback condition).

An examination of the multivariate relationships of the data

reveals strong support for hypothesis H1: the feedback condi-

tions outperformed the no feedback condition. There was also

strong support for hypothesis H2: the MR feedback condition

outperformed the physical feedback condition.

The rst Helmert contrast was signicant and supports

hypothesis H1, F(2, 76) = 10.14, p < .001, multivariate η2 =

.21. The univariate F-tests revealed that, compared to the no

feedback condition, the feedback conditions were (a) higher

on accuracy, F(1, 77) = 17.69, p < .001, η2 = .19; and (b)

not statistically signicant different for time, F(1, 77) = 2.21,

p = .14, η2 = .03. These results indicate that the effect of

increased performance in the feedback conditions is driven

by higher accuracy.

The second Helmert contrast was signicant and supports

hypothesis H2, F(2, 76) = 6.86, p < .01, multivariate η2

= .15. The univariate F-tests reveal that the MR feedback

condition outperformed the physical feedback condition with

(a) signicantly higher accuracy, F(1, 77) = 5.80, p = .02, η2

= .07; and (b) signicantly lower time, F(1, 77) = 13.91, p

< .001, η2 = .15. These results indicate that the MR feedback

condition was superior to the physical feedback condition.

B. Subjective Measures

The three subjective dependent measures (SUS, MDMT,

RTLX) were all correlated (ps < .001) with each other: r

= .65 for SUS and MDMT; r = -.60 for SUS and RTLX;

and r = -.54 for MDMT and RTLX. These correlations

suggest that usability and trust increase in tandem, and that

workload decreases as both usability and trust increase. The

correlations between the dependent variables also indicate

that a multivariate analysis of the data is warranted to account

for the relationships among the dependent variables.

A MANOVA was conducted using a pair of a priori

orthogonal Helmert contrasts in order to test hypothesis H3

(that the feedback conditions would facilitate better user
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experiences than the no feedback condition) and hypothesis

H4 (that the MR feedback condition would facilitate better

user experiences than the physical feedback condition). An

examination of the multivariate relationships of the data

reveals strong support for hypothesis H3: Feedback from

the robot in both the physical and MR conditions facilitated

better overall user experiences than no feedback. There was

also a trend in the data consistent with hypothesis H4: MR

feedback facilitated better user experiences than physical

feedback. The means and standard deviations of all three

subjective metrics for each condition are shown in Figure 3.

The rst Helmert contrast was signicant and supports

hypothesis H3, F(3, 75) = 3.13, p = .03, multivariate η2 = .11.

The univariate F-tests revealed that the feedback conditions

were rated as (a) signicantly better on usability, F(1, 77) =

5.66, p = .02, η2 = .07; (b) signicantly higher on trust, F(1,

77) = 7.56, p < .01, η2 = .09; and (c) signicantly lower on

workload, F(1, 77) = 6.50, p = .01, η2 = .08. These results

offer strong support for hypothesis H3.

The second Helmert contrast was not signicant, F(3, 75)

= 1.19, p = .32, multivariate η2 = .05. However, the means of

the measures are consistent with hypothesis H4, with ratings

in the MR feedback condition greater on usability and trust

than in the physical feedback condition, as well as lower

on workload. None of the univariate F-tests were statistically

signicant, but workload and trust had noteworthy effect sizes

of 2-4% explained variance: F(1, 77) = 0.59, p = .45, η2 =

.01 for usability; F(1, 77) = 2.86, p = .10, η2 = .04 for trust;

and F(1, 77) = 1.81, p = .18, η2 = .02 for workload. Given

the interesting trend but insufcient statistical condence,

future work will aim to elucidate whether there is in fact

a qualitative difference between the two feedback conditions

along subjective measures.

We gain some additional insight from the MANOVA by

examining the semi-partial coefcients (discriminant function

weights) for the three user experience measures. The semi-

partial coefcients are like weights in a multiple regression

and indicate which of the three measures most strongly

discriminates between the conditions. When contrasting feed-

back to no feedback, MDMT (trust) makes the strongest

contribution (.57), RTLX (workload) also makes a notable

contribution (-.46), but SUS (usability) makes little unique

contribution (.15) above and beyond RTLX and MDMT.

Taken together, while the three measures show high corre-

lations and share some ability to discriminate between the

feedback and no feedback conditions, the MDMT is able to

stand by itself as a parsimonious tool to capture user attitudes

towards a robot. This is perhaps because it is a user-friendly

measure, derived from natural language people use in the

domain of trust [20].

VII. DISCUSSION

The results from the objective and subjective measures

in our user study paint a single, coherent story about the

conditions we tested. In general, the feedback conditions

(physical, MR) outperformed the no feedback condition,

and the MR feedback condition (control) outperformed the

physical feedback condition. The user experience of each

condition roughly paralleled the performance of the system.

Ultimately, we conclude that models that integrate feedback

perform better and are preferred by users, and that MR is a

promising modality for this communication.

In terms of objective measures, the feedback conditions

(physical, MR) were more accurate than the no feedback

condition (control), as was the MR condition compared to

the physical condition. While the MR condition averaged less

time than the physical condition, the time difference between

the feedback condition and the no feedback condition was

not statistically signicant; this appears to stem from the

reduced speed of the physical condition, which required

extra time for the robot to move its end effector to offer

feedback. The results thus fully support hypothesis H2 (MR

feedback condition compared to physical feedback condition

on objective measures), with nuanced support for hypothesis

H1 (feedback condition compared to no feedback condition

on objective measures). Remarkably, the MR condition was

simultaneously the most accurate and the fastest, contrary to

the typical speed-accuracy tradeoff. These results show par-

ticular promise for the MR feedback model, which appears

to exhibit the best performance in terms of both accuracy and

speed.

The subjective measures on user experience offer a similar

story. Participants gave better user experience ratings across

all three subjective measures (usability via SUS, trust via

MDMT, workload via RTLX) in the feedback conditions

(physical, MR) as compared to the no feedback condition

(control). Although there was no statistically signicant

difference between the user experience ratings in the MR

feedback condition and the ratings in the physical feedback

condition, the means across all three subjective measures

improve from no feedback to physical feedback, and again

from physical feedback to MR feedback. As a result, we

believe that the benets of MR are worth exploring further

in future work. The results thus fully support hypothesis H3

(better user experience in feedback conditions compared to

no feedback condition on subjective measures), with trending

support for hypothesis H4 (better user experience in MR

feedback condition compared to physical feedback condition

on subjective measures)

VIII. CONCLUSION

This work presents a robot interaction model that is able to

interpret multimodal human communication and use a mixed

reality interface to perform question-asking in an item dis-

ambiguation task. We approach our problem from a decision-

theoretic standpoint, and ultimately offer our new model

called the Physio-Virtual Deixis (PVD) POMDP. Lastly,

we report the results of our user study, which compared

two feedback conditions (physical, MR) to a no feedback

condition, as well as compared the physical and MR feedback

conditions to each other. We found statistically signicant

support along both objective and subjective measures in
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favor of conditions that offer feedback (physical, MR) over

no feedback (control), as well as statistically signicant

support from objective measures (and trending support from

subjective measures, though not signicant) in favor of a MR

feedback condition over a physical feedback condition.
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