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1 Proof for Synthesizing Navigation Skills by Exploiting Spatial1

Independence2

We now formally describe under what conditions we will resolve a manipulation option o for some3

set of starting states Z. Consider an option o that has an associated navigation symbol σo to char-4

acterize part of its initiation set Io: Io = Proj(Z, Sb) ∩ σo. Then this implies that if the agent is in5

a state that is an element of Z, and only changes the robot’s mobile base pose to be an element of6

the navigation symbol without changing anything else, then the resulting state would be an element7

of the initiation set of the option. We prove that if our assumptions regarding the initiation set of a8

manipulation option are satisfied, then we can synthesize a locomotive behavior from our navigation9

stack using our learned navigation symbol, which means we can generate the navigation stack to10

support a specific option. Since the state is Markovian, proving for the more general case where we11

aim to generate a navigation stack to support a manipulation plan follows from repeated applications12

of Theorem 1, and so we omit it.13

If a manipulation option’s oi initiation set can be written using the definition of spatial independence14

(Equation 1) from the current set of states Z, then sampling a location l from σoi and synthesizing15

and executing a path plan from the navigation stack to l from a start state in Z is sufficient for16

enabling the robot to execute the manipulation option oi.17

Theorem 1. If, for a starting set of states Z, the initiation set Ioi for a manipulation option oi ∈ O18

can be characterized as in Equation 1, then a location l sampled from the associated navigation19

symbol l ∈ σoi can be used in conjunction with a path planner to locomote the robot to a state s20

that is within Ioi the initiation set of oi as long as there is a collision-free path.21

Proof. By our assumptions, we know that the initiation set for the manipulation option can be de-22

composed into Io = Proj(Z, Sb)∩σo
s . We also assume that the agent starts in a state z element of Z23

(z ∈ Z). We can then use the pose l that is sampled from the navigation symbol σoi to synthesize24

a navigation action ni that starts from z and ends at location l, ni ∈ N(z, l) as long as there is a25

collision free path through the environment. The effect of executing ni from z by definition only26

affects spatial state variables Sb, and so the resulting state is an element of Proj(Z, Sb) and also an27

element of navigation symbol σo
s . Therefore it the resulting state is an element of the intersection of28

Proj(Z, Sb) and σo
s , which is by definition the initiation set of oi based on the Equation 1.29

30

2 Simulation Experiment: Spatial Independence for Learning Symbols31

Part of the model learning process requires identifying which factors are independence since there32

is no a priori assumption about the structure of the initiation and effect sets of the skills. Partitioning33

is via DBSCAN clustering [1], and the precondition classifiers are learned using a SVM [2] with34

an RBF kernel (hyperparameters are optimized using grid search. The effect density estimation is35

performed with a kernel density estimators [3, 4] with a Gaussian kernel, with a grid search over the36

bandwidth.37
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To incorporate the spatial independence assumption, we use a simple augmentation to the baseline:38

data collection occurs as before, but the spatial state variables are separated from all the other non-39

spatial state variables before learning. We then perform model learning exactly as [5], except with40

the separated spatial state variables already identified as an independent factor. This difference41

represents how the spatial independence assumption can be incorporated into an existing symbol42

learning pipeline.43

3 Experiment: Transfer of Learned Abstractions44

In the second set of experiments, our goal is to evaluate how AOSMs help transfer learned45

abstractions to novel environments. For these experiments, we provided a manipulation-46

only plan p ={PickUp(Mug), ToggleOn(CoffeeMachine), ToggleOff(CoffeeMachine),47

PutIn(Mug,CoffeeMachine), MakeCoffee(Mug,CoffeeMachine)}. The robot must construct the48

navigation symbols that enable it to generate navigation behaviors that enable those actions to be49

executed.50

3.0.1 Approaches51

For these set of experiments, all of the approaches perform a similar procedure. For a given scene52

and current step of the plan o, the robot 1) uses rejection sampling to sample a pose l from the53

associated navigation symbol σo 2) uses the path planner to move to location l, and 3) attempts to54

run the manipulation option o. If the agent fails to successfully execute the manipulation option,55

the location l is added as a negative sample to the dataset used to train σo; the robot repeats these56

steps until successful execution. When the robot is successful in executing the manipulation option,57

location l is added as a positive sample to the dataset used to train σo, and the robot proceeds to the58

next plan step. These navigation symbols are trained using Gaussian Process classifiers [6] with an59

RBF kernel.60

There are two important design choices when learning navigation symbols that can be chosen inde-61

pedently of each other: 1) which spatial frame are the navigation symbols learned in, and 2) what62

proposal distribution is used for rejection sampling. In [7], the global map frame is used as the spatial63

frame and a random distribution for sampling, and we call this baseline random global. Learning64

symbols in the map frame enables the robot to leverage a path planner to generate navigation behav-65

iors, but it means that the robot must relearn the symbols when the scene changes. To exploit the66

structure of object-centric skills, an object-centric spatial frame can be used to learn the symbols,67

which the agent can transform into a map frame given a semantic map that includes object pose.68

This enables the agent to effectively transfer learned information from one map to another. Using an69

object-centric frame with a random sampling distribution is akin to the approach in James et al. [8],70

which we term random object. However, using a uniform distribution as the proposal distribution71

is extremely inefficient since the robot will try manipulating objects from locations extremely far72

from the object. Kaelbling and Lozano-Pérez [9] proposed exploiting the nature of space using a73

geometric heuristic that samples poses near the object, and so we call the baseline that uses the ge-74

ometric heuristic for sampling poses and learning in a global map frame heuristic global. The final75

approach learns in an object-centric spatial frame and uses the geometric heuristic to sample poses,76

which to our knowledge has not been used in conjunction to learn symbols. We call this baseline77

heuristic object, and it corresponds to our assumption. To give an upper-bound on performance, we78

also evaluate an oracle, which always samples feasible manipulation locations.79

To determine how effectively each approach enables learned abstractions to be transferred to differ-80

ent environments, we use investigate two experimental settings: when the agent successfully finishes81

executing the plan, 1) the scene is reset to the initial configuration and the agent retries executing the82

plan (the single-scene setting), and 2) a new scene is chosen and the agent retries executing the plan83

(the multi-scene setting). In the single-scene setting there is no need for transfer and the choice of84

spatial frame does not matter. This lets us evaluate how important the chosen proposal distribution is85
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for learning navigation symbols. In the multi-scene setting, the agent must also transfer the learned86

symbols to different scenes, which lets us evaluate how useful the choice of frame is for transfer.87

3.0.2 Metrics88

For each task execution in a scene, we report the cumulative total number of manipulation skills the89

robot executed, until the plan succeeded.90

3.0.3 Results91

Results for the single-scene and multi-scene setting for all four approaches are in Figure ??. The92

approaches differ substantially between the single-scene and multi-scene setting. In the single-93

scene setting, the heuristic sampler quickly guides the agent towards locations that afford useful94

manipulations, when compared to sampling random locations. However, after around 15 episodes,95

all of the approaches learn to plan in the single scene, and all approach the oracle’s performance96

(which is just the length of the plan). However, in the multi-scene setting, although the heuristic97

sampler with global frame starts off better than the random sampler with an object-centric frame,98

after about 3 episodes, the object-centric frame with random sampling starts to outperform it. This99

is because the global frame approach cannot port across different scenes, whereas object-centric100

frames can. Therefore, we see that navigation symbols in an AOSM should be a) learned in an101

object-centric frame to support portability to new domains, and b) learned using a sampling process102

with geometric information included, rather than sampling at random.103

Figure 1: An example demonstration of the Spot building an AOSM and using it to prepare coffee.
(Left): Spot navigates around the space, identifies objects, and constructs an AOSM. (Right): With
the AOSM and a manipulation-only plan, the Spot can synthesize the navigation abstractions to
locomote around the environment to successfully execute the manipulation skills.

4 Robot Hardware Demonstration104

Our demonstration of using an AOSM on a real robot can be seen in full detail in Figure 1. We105

first manually drive the robot around and use an off-the-shelf SLAM implementation to generate106

a 3D geometric map of the environment which the robot can use to navigate to 3D poses. The107

robot then constructs a semantic map that captures the spatial pose and semantic attributes of each108

of the relevant objects in the scene. Once the robot is equipped with a set of manipulation skills,109

it generates an AOSM of the scene using hand-crafted navigation symbols, which enables it to110

sample navigation poses that support successfully executing each of its manipulation skills. The111

robot then uses a hand-specified PDDL of the coffee preparation task to generate the manipulation-112

only plan using Fast Downward, which results in: PickUp(WaterCup),Pour(WaterCup),113

Place(WaterCup),PickUp(CoffeeGrinds),Pour(CoffeeGrinds), Place(CoffeeGrinds), and then114

CloseLid(CoffeeMachine), PushButton(CoffeeMachine). With the AOSM, the robot can syn-115

thesize a navigation stack to support plan execution (Figure 1).116

We time how long it takes the robot to construct an AOSM in 2 different environments. Navigating117

the environment to observe the objects and then constructing the AOSM takes an average of 82.5118

seconds. Executing the plan for the coffee preparation task takes on average 140 seconds. These119

timings demonstrate the efficacy of AOSMs to enable a robot to rapidly generate the navigation120

abstractions for supporting task execution.121
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