
Comparing Virtual Reality Interfaces for the
Teleoperation of Robots

Rebecca Hetrick, Nicholas Amerson, Boyoung Kim, Eric Rosen 1, Ewart J. de Visser, and Elizabeth Phillips
United States Air Force Academy, Brown University 1

{C20rebecca.hetrick, C20nicholas.amerson, boyoung.kim.kr.ctr, eric rosen1, ewart.devisser.nl.ctr, elizabeth.phillips}
@usafa.edu,@brown.edu1

Abstract—Whether exploring a defunct nuclear reactor, defus-
ing a bomb, delivering medicine to quarantined patients, repair-
ing the International Space Station from the outside, or providing
dexterous manipulation for those with motor impairments, robots
have the ability to be in places where humans cannot go, can
augment the capabilities of humans, and improve quality of life
and work. Since even the most advanced robots have difficulty
completing tasks that require grasping and manipulation, human
teleoperation is often a practical alternative for these types
of tasks. By importing the dexterity, expertise, and wealth of
background knowledge of a human operator, robots can leverage
the skills of their human teammates without requiring humans
to be physically present. However, existing robot teleoperation
interfaces often rely on 2D methods to view and interact with the
3D world, which is cumbersome for human operators. Virtual
reality interfaces may be suitable for resolving problems with
traditional teleoperation interfaces (e.g., perspective adjustment,
action specification). The goal of this research was to investigate
the efficacy of using two different Virtual Reality interfaces—
positional control, similar to waypoint navigation, and trajectory
control, similar to click and drag—for remotely controlling a
Baxter robot to complete a variety of dexterous manipulation
tasks. The results of this study will help us to develop control
interfaces that allow for more intuitive robot manipulation and
ultimately, better distal collaborations between humans and
robots.

Index Terms—Virtual reality, human-robot interaction, teleop-
eration, interface design

I. INTRODUCTION

Many of the application domains for robotic teleoperation
involve humans controlling robots at a distance. Whether nav-
igating a defunct nuclear reactor, defusing a bomb, repairing
the International Space Station from the outside, delivering
medicine in quarantined environments, or providing dexterous
manipulation for those with motor impairments, robots have
the ability to be in places where humans cannot go, can
augment the capabilities of humans, and can improve quality
of work and of life. Due to challenges in robot perception,
planning, and control, even the most advanced robots have
difficulty completing grasping and manipulation tasks. Thus,
human teleoperation is often a practical alternative to au-
tonomous manipulation, because it leverages the dexterity,
expertise, and wealth of background knowledge of human
operators without requiring them to be physically present.
However, in order to perform manipulation tasks well, human
operators need high-fidelity control over the robot’s actuators

and an accurate and rich visualization of the robot’s environ-
ment.

State-of-the-art teleoperation systems require the operator
to both manage their view of the scene and, separately,
command the robot’s actuators. Existing interfaces generally
rely on computer monitors to display sensor data, and joysticks
or keyboards to actuate the robot. These approaches force
humans to rely on 2D methods to view and interact with a
3D world, which often makes using them cumbersome and
workload-intensive for human operators [1, 2]. Consequently,
there is a need for alternative methods of interfacing with and
controlling robotic systems. Recent renewed interest in, and
lowered cost of virtual reality (VR) devices have raised the
possibility of using VR as an interface for robot teleoperation.
VR promises a user experience that is both immersive and
detailed, coupled with complete freedom of viewpoint (i.e.,
3D) and provides a natural method of controlling robot action
(e.g., mapping human arm movement to robot arm movement
for instance [3]). VR systems may, therefore, be suitable for
resolving many problems associated with state-of-the-art robot
teleoperation interfaces.

II. BACKGROUND

Researchers have begun investigating the use of consumer-
grade AR/VR systems for robotic control. Whitney et al. [4]
showed that non-expert users were more efficient in teleoper-
ating a robot to complete a number of dexterous manipulation
tasks using VR than more traditional keyboard and monitor
interfaces. Teleoperating a robot with a VR interface resulted
in faster completion times, lower cognitive workload, and
higher usability and user satisfaction scores than teleoperating
the robot via more traditional keyboard and monitor interfaces.
Lipton [5] developed a VR-robot teleoperation system that
employed a homunculus model of the robot, in which the user
was virtually embedded in a “control room” inside the robot’s
“mind.” In an informal evaluation, the researchers asked users
to control the robot to engage in a number of manufacturing
and pick and place tasks with objects of different shapes and
compliance. Via the homunculus VR model, users successfully
picked up each item, transferred that item between robot
hands, and finally placed each item in a bin.

Consumer grade mixed reality displays are also being used
to support human-robot interaction. In a study by Rosen et



al [6], researchers investigated the use of mixed reality dis-
plays (i.e., the Microsoft HoloLens) to communicate a robot’s
planned motion while working with humans in collocated
spaces. Communicating intended motion in such a way could
help reduce risk for accidents in many industrial settings.
Participants who used the HoloLens to view the robot’s
planned motion made faster and more accurate judgements
about collisions than participants using a 2D display. Research
by Gadre et al [7] extended the use of the Microsoft HoloLens
to allow users to not only view information from the robot,
but also use the device as a visual programming interface,
using the interface to command the robot to perform and revise
tasks. The majority of participants found visual programming
using the mixed reality headset to be more intuitive and less
cognitively demanding than using a more traditional syntax
method of programming the robot. They concluded that using
consumer-grade mixed reality displays shows great promise
for making robot programming accessible to a variety of end
users.

Because several researchers have demonstrated the promise
of using consumer grade AR/VR hardware for both robot
communication to users, and robot control by users, there is
great value in continuing to explore the use of consumer grade
AR/VR hardware to improve human-robot interaction. Thus,
it is worthwhile to investigate the conditions under which dif-
ferent VR interface designs may be more effective than others.
Doing so will allow for the creation of control paradigms that
work best under a variety of different use cases—teleoperation
for fine manipulation tasks may be improved by a different
type of VR interface than teleoperation for gross motor tasks,
for instance. The purpose of this study was to evaluate the
effectiveness, usability, and resulting workload associated with
using two distinct VR robotic teleoperation interfaces for con-
trolling a robot to perform a variety of dexterous manipulation
tasks.

III. METHOD

A. Participants

Supported by a power analysis conducted using G*Power
[8], we planned to recruit 52 participants for this study. How-
ever, disruptions to in-person data collection due to the spread
of COVID-19 resulted in only 12 participants (11 males, 1
female) completing the study. All participants were volunteers
recruited from the United States Air Force Academy, with ages
ranging from 18 to 28 (M = 20.82, SD = 3.28). Additionally,
we asked participants to report their prior experience working
with VR, as well as their prior experience working with robots
from 0 (No experience) to 10 (A lot of experience). On average
participants reported little prior experience working with VR
(M = 3.17, SD = 2.89). However, four participants reported
a 5 or higher on the scale used to indicate prior VR experience.
One of those four participants reported “A lot of experience”
working with VR. Participants also reported low prior expe-
rience working with robots, (M = 2.42, SD = 2.15). Only
two participants reported above a 5 on the scale used to
report prior experience working with robots. No participants

reported symptoms of VR sickness while completing or shortly
after the study. Participants received course credit in return
for their participation. All materials associated with the study
were reviewed and approved by the United States Air Force
Academy’s Institutional Review Board and Survey Control
Office.

B. System Overview: Baxter Robot, HTC Vive and ROS Real-
ity Bridge

1) Baxter robot: Baxter, a ROS enabled robot created by
Rethink Robotics for industrial pick and place tasks, was used
as the robotic platform for this experiment. Baxter is equipped
with two 7 DOF arms, each with a parallel gripper capable
of picking up and replacing objects. Baxter is also equipped
with two RGB eye-in-hand cameras near its wrists, that point
down toward its end effectors. We outfitted our Baxter robot
with a Microsoft Kinect v2, mounted to the top of the robot’s
head. The Kinect was used to build a 3D point-cloud of the
physical experimental environment to be displayed to users in
VR.

2) HTC Vive: We used the HTC Vive headset and con-
trollers as the Virtual Reality head and handsets for the user.
On the Vive controllers, we used the side and trigger buttons
as binary inputs for completing the experimental tasks. Using
either, or alternating between, both side buttons on a given
controller was used to move the corresponding Baxter arm.
The trigger button on the controller was used to open and close
Baxter’s corresponding gripper. The controllers were mapped
bilaterally onto Baxter’s two arms, such that participants could
control both of Baxter’s arms independently using the two Vive
controllers.

3) ROS Reality Bridge: ROS Reality Bridge is an open
source, over-the-Internet system that allows any ROS-enabled
robot, like Baxter, to communicate with any Unity-compatible
virtual or augmented reality headset (with or without handsets)
via Unity game engine. It allows users to bilaterally view and
control robots over-the-Internet using consumer-grade VR and
AR hardware. ROS Reality has served as the technical basis
for the VR research in Whitney et al. [1] and for the AR
research in Rosen et al. [6].

Specifically, the ROS Reality Bridge system is composed
of an an HTC Vive connected to a computer running the
Unity game engine. Unity builds a local copy of the robot
based on its URDF (Unified Robot Description Format) with a
custom-made URDF parser. Unity connects to a ROS network
over the Internet via a Rosbridge WebSocket connection. The
pose and imagery of the robot’s wrist cameras are compressed,
bundled, and sent via this WebSocket connection, as well as
the color and depth image of the Kinect v2 mounted on top of
the robot’s head. The color and depth image are built into a
point-cloud in Unity via a custom shader. The robot transform
data is converted to Unity coordinates and updates the virtual
robot’s pose. When the user holds down the Vive’s handset
side controller buttons, the pose(s) of the user’s controller(s)
are converted to the ROS coordinate frame and sent back to
the robot, which uses an inverse kinematics solver to move the



robot’s end effectors to the specified pose(s). Full system de-
tails can be found in [1] with open source code and documen-
tation available at https://github.com/h2r/ros reality bridge.

4) Virtual environment: The environment represented in
VR consisted of three primary informational components: 1)
a 3D model of the robot, obtained by importing a description
of the robot in URDF format which was continually updating
with the TF topic from the robot’s ROS network; 2) a 3D
point-cloud of the scene, obtained by a manually calibrated
Kinect v2 sensor mounted on top of the robot’s head; and 3)
a display of Baxter’s two wrist cameras (i.e., two 1280 x 800
pixel RGB cameras, downscaled to 400 x 600, showing a live
image of the environment immediately forward of the robot’s
gripper).

In the virtual environment, participants were able to choose
to assume either a robocentric or egocentric position, or switch
between them at any time by walking around the virtual space,
or around the virtual model of the robot. In a robocentric
model, the human and the robot share a virtual space, but are
not necessarily superimposed on one another. In an egocentric
model, the person can step into the virtual model of the robot,
thereby superimposing themselves on the robot and assuming
the pose and first-person perspective of the robot as if they
”were the robot.”

5) Physical environment: The physical laboratory space
was equipped with the Baxter robot, a 5 x 3 ft. table placed
in front of the Baxter, a computer workstation for participants
to complete our subjective measures and for experimenters to
record our objective measures, and an approximately 10 x 10
area of floor space to allow participants to physically walk
around the virtual robot depicted in the Vive headset. Exper-
imenters also surrounded the table with a small temporary
wall made with cardboard to help keep objects used in the
experimental tasks from falling onto the floor.

C. Experimental tasks

Participants teleoperated the Baxter robot to complete four
tasks; two gross motor movement tasks and two fine motor
movement tasks.

1) Gross motor tasks: : The first gross motor task was a
keyboard press. A QWERTY keyboard was placed in front of
Baxter and the participants’ goal was to use the VR headset
and controllers to teleoprate Baxter to complete 5 presses (i.e.,
trials) of the “Space Bar” without missing.

The second gross motor task was controlling Baxter to per-
form a drumming rudiment—a paradiddle-diddle. We placed
a dry erase marker in each of Baxter’s grippers with large
sheets of paper attached to the table underneath each of the
robot’s end effectors. Participants’ goal was to complete the
paradiddle-diddle pattern (i.e., right, left, right, right, left, left)
while aiming for two small dots drawn on each piece of paper.
Participants were given one attempt to complete this task.

2) Fine motor tasks.: The first fine motor movement task
was the YCB (Yale-CMU-Berkeley) cup stacking task [9].
This task involved stacking 4 cups that gradually increase in

size inside one another. Participants were given 3 attempts to
direct Baxter to stack the smaller cups into the larger cups.

The last fine motor movement task was a pouring task where
participants were asked to control Baxter to pour small plastic
beads into a glass places inside of a bowl placed on top of a
plate. Participants used the VR system to control the Baxter
robot in pouring the beads out of a container and into the cup.
Participants were given three attempts to try to pour as many
beads into the cup as possible (i.e., by not spilling beads into
the bowl, or onto the plate).

D. Subjective measures
1) Biographical data questionnaire: Participants were

asked to fill out a biographical data questionnaire that asked
them for biographical information regarding age, gender, hand-
edness, prior experience with VR, and prior experience with
robots.

2) Cognitive workload NASA-TLX: Participants also com-
pleted the NASA-TLX, a subjective measure of cognitive
workload most frequently used in order to study human-
machine or human-interface interaction. The participants pro-
vided ratings of their workload on six subscales: mental de-
mand, physical demand, temporal demand, effort, frustration,
and performance. The initial five subscales range from 0 (Low)
to 100 (High). The sub-scale for performance ranges from
0 (Perfect) to 100 (Failure). Overall workload scores were
derived by computing an average of participant ratings on
the six subscales, after reversing scores on the performance
subscale.

3) System Usability Scale (SUS): The SUS assesses per-
ceptions of overall system usability by asking participants to
rate ten statements on 5-point Likert scales ranging from 1
“strongly disagree” to 5 “strongly agree.” The statements cover
different perceptions of the system, such as the participant’s
perceived likelihood to use the system in the future, the
frequency with which they would like to use it, as well as
perceived complexity, consistency, and cumbersomeness. After
reversing negatively worded items, scores on each item on the
SUS are combined and then multiplied by 2.5 to provide an
overall usability score that can range from 0 to 100.

E. Objective measures
For all tasks, time to completion across attempts of the

task were recorded along with a measure of precision and a
measure of accuracy for each attempt. Accuracy was defined as
how closely the participant could control the robot to complete
each task (e.g., reach a commanded position), and precision
was defined as how well participants could control the robot
to repeat each task. A detailed description of the measures of
precision and accuracy for each of the gross motor and fine
motor tasks are given below.

1) Gross motor task 1: Keyboard press: Accuracy was
measured as the average distance in inches from the center of
the space bar (marked with a white square) to each key pressed
across 5 attempts. Precision was measured as the standard
deviation of the distance between each key press across 5
attempts.



2) Gross motor task 2: Drum Rudiment: Accuracy was
measured as the average distance away from the center of
the target (large dot on the on the page). Precision was
measured as the standard deviation of each mark created by
the participants away from the center of the target.

3) Fine motor task 1: Cup stacking: Accuracy was mea-
sured on of a scale ranging between 1 and 0. A participant
would receive a 1 if the smaller cup(s) were successfully
placed into the larger cup. They would receive a 0.5 if the
cup went in diagonally, but stayed in, and they would receive
a 0 if the cup failed to go into the other cup. The average
of these scores across attempts was used to calculate task
accuracy. Precision was measured as the standard deviation
of these attempts.

4) Fine motor task 2: Pouring: For the pouring task,
accuracy was measured as the proportion of beads that the
participant was successfully able to control Baxter to pour
into the glass alone. Precision was measured as the average
difference across trials in the amount of beads in each of the
glass, bowl, and plate (i.e., change across trials in each).

F. Design

This study used a 2 (Trajectory control vs. Positional
control) x 2 (Fine motor tasks vs. Gross motor tasks) mixed
between-within subjects design. Each participant was pseudo-
randomly assigned to control the Baxter robot using one
of the two control interfaces. Participants in each interface
condition completed both the gross motor and fine motor
tasks. Descriptions of the control interface conditions are given
below.

1) Trajectory control: The actions of the trajectory control
interface condition somewhat mimicked that of clicking and
dragging a computer mouse. When the user pressed the HTC
Vive side controller button and moved the controller to their
desired position, the Baxter robot’s corresponding arm would
follow the relative trajectory of the controller’s movement.

2) Positional control: The positional control interface con-
dition somewhat resembled waypoint navigation commonly
used with mobile robots. When the HTC Vive side controller
button was pressed, the system recorded the location of the
controller as a coordinate in 3-dimensional space. Then, as
long as the controller button remained pressed, the Baxter
robot’s arm would move until it reached that 3-D coordinate in
space and then would stop. Once the button had been released,
the system forgot the last recorded location and the button
needed to be re-pressed to record another location for Baxter’s
arms to move.

G. Procedure

Upon arriving in the lab, participants were provided with
informed consent information. Once consent was provided,
participants were asked to put on the HTC Vive headset, to
adjust it for comfort, and to orient themselves in the virtual
world. Participants were then instructed that they could choose
which orientation of the robot they would like (i.e., egocentric,
robotcentric, or switch between the two). All participants

assumed the egocentric model of the robot. They were then
given a brief tutorial on how to use the HTC Vive controllers
to teleoperate the robot in accordance with their interface
control condition. Then, participants completed both gross
motor manipulation tasks, followed by both fine motor ma-
nipulation tasks. Participants were asked to complete the SUS
and the NASA-TLX after each pair of tasks. Once complete,
participants were thanked for their time and granted course
credit for their participation. The study took approximately
one hour to complete.

IV. RESULTS

A. Accuracy and Precision

A series of independent samples t-tests were conducted to
test for statistically significant differences in accuracy scores
and in precision scores between the two VR robot control
conditions across each of the manipulation tasks.

1) Gross motor: Keyboard press: For the keyboard press
task, the difference between accuracy scores in the positional
and trajectory control conditions was statistically significant,
t(10) = 4.402, p = 0.001, Cohen’s d = 2.38, but violated
the equal variance assumption of the statistical test, equal
variance not assumed t(10) = 3.878, p = 0.011. Participants
in the positional control condition had better accuracy scores,
(i.e., shorter average distances in inches from the target)
than participants in the trajectory control condition, M =
1.11, SD = 0.31 and M = 2.40, SD = 0.70 respectively.
Participants also completed the keyboard press trials faster
(in seconds) in the positional VR control interface condition
M = 141.43, SD = 65.30 than in the trajectory interface
condition M = 233.60, SD = 88.30. However, the differ-
ences in completion times between conditions only approached
statistical significance t(10) = 2.089, p = 0.063, Cohen’s
d = 1.19. Between the two control conditions, scores on the
measure of precision for the keyboard press task were not
statistically significant from one another t(10) = 0.166, p =
0.872, Cohen’s d = 0.10, indicating that participants in both
conditions were roughly equally precise in controlling the
robot to complete the key presses.

2) Gross motor: Drum rudiment: Because completing the
drum rudiment task required participants to control both of
Baxter’s arms, accuracy and precision scores were computed
for each. There was a significant difference in accuracy scores
between the VR robot control conditions for the right arm.
When controlling the right arm of Baxter, participants who
used the positional control interface condition were more
accurate than participants who used the trajectory control
interface, M = 1.67, SD = 0.79 and M = 2.80, SD = 0.88
respectively t(10) = 2.353, p = 0.040, Cohen’s d = 1.35.
Participants in the positional VR control condition were also
statistically significantly faster, M = 83.43, SD = 22.63, in
completing the drum rudiment task than participants in the
trajectory control condition, M = 269.00, SD = 188.35,
t(10) = 2.632, p = 0.025, Cohen’s d = 1.35. Accuracy
scores between conditions for the left arm were not statistically
significantly different from one another, and neither were



precision scores between conditions for both the left and right
arms, all p′s > 0.05

3) Fine motor: Cup stacking: Cup stacking using the posi-
tional control interface was more accurate t(10) = 2.757, p =
0.020, Cohen’s d = 1.51, more precise t(10) = 2.406, p =
0.037, Cohen’s d = 1.39, and faster t(10) = 2.831, p = 0.018,
Cohen’s d = 1.49, equal variance not assumed for task
completion time t(10) = 2.831, p = .018 than cup stacking
using the trajectory control interface.

TABLE I
TABLE OF MEANS AND STANDARD DEVIATIONS FOR MEASURES OF

ACCURACY, PRECISION, AND COMPLETION TIMES FOR THE CUP STACKING
TASK.

Measure Condition Mean SD N
Accuracy Positional 0.93 0.13 7

Trajectory 0.60 0.28 5
Precision Positional 0.12 0.23 7

Trajectory 0.46 0.26 5
Task completion time (sec.) Positional 180.29 37.76 7

Trajectory 467.00 269.53 5

4) Fine motor: Pouring: Finally, for the pouring task, there
were no significant differences between VR robot control con-
ditions on the measures of accuracy, t(10) = 1.491, p = 0.167
precision, t(10) = 0.143, p = 0.889 or task completion times
t(10) = 0.455, p = 0.641.

B. NASA-TLX: Cognitive workload

A 2 x 2 mixed between-within subjects ANCOVA was
conducted to assess the impact of two different VR robot
control interface conditions (trajectory vs. positional con-
trol) on participants’ cognitive workload scores across two
task types (gross motor vs. fine motor tasks) while con-
trolling for prior VR experience. The interaction between
control condition and task type was not statistically significant
Wilks′Λ = 0.950, F (1, 9) = 0.474, p = 0.508, η2partial =
0.050. There was a statistically significant main effect for
task type, however. Participants reported significantly higher
workload scores after completing the fine motor tasks (M =
52.100, SD = 8.014) than after completing the gross motor
tasks (M = 38.614, SD = 10.388), Wilks′Λ = 0.386,
F (1, 9) = 14.305, p = 0.004, η2partial = 0.614

C. SUS: Usability

A second 2 x 2 mixed between-within subjects ANCOVA
was conducted to assess the impact of two different VR
robot control interface conditions (trajectory vs. positional
control) on participants’ perceived usability of those interfaces
across the task types (gross motor vs. fine motor tasks) while
controlling for prior VR experience. The interaction between
control interface and task type was not statistically significant
Wilks′Λ = 0.988, F (1, 9) = 0.106, p = 0.753, η2partial =
0.012, nor were the main effects for task type or control
conditions, all p′s > 0.05.

However, participants in the positional control interface
condition (M = 47.18, SD = 11.05) reported higher subjec-
tive usability scores than participants in the trajectory control

Fig. 1. Cognitive workload scores in interface conditions by task type.
Interaction was not statistically significant

Fig. 2. System Usability Scores in interface conditions by task type.
Interaction was not statistically significant.

interface condition (M = 38.25, SD = 10.94) across both
the gross motor and fine motor tasks, although the differences
were not statistically significant.

V. DISCUSSION

With the rapid proliferation of consumer-grade VR systems
at accessible price points, smaller form factors, and with better
on-board computing, there has been increasing interest in using
these systems to solve many of the problems associated with
robot teleoperation, manipulation, and grasping. The purpose
of this study was to test the effectiveness, usability, and
cognitive workload associated with using two different VR
robotic control interfaces for completing a variety of gross
and fine robot manipulation tasks.

A clear pattern of differences between control interfaces
on the subjective measures of performance did not emerge.
There were no statistically significant differences in usability
or workload scores between the interface conditions. However,
participants did report that completing the fine motor tasks was
cognitively more demanding than completing the gross motor
tasks using both of the control interfaces. It may be important,
then, to design VR robot control systems that can support
users—perhaps by changing the magnitude in gain in mapping
human movement to robot movement—when manipulation
tasks change from gross to fine, or when increasingly precise



teleoperation of the robot is needed. Similar to an adaptive
automation paradigm [10, 11, 12], doing so may be beneficial
for aiding humans in managing workload and maintaining
situation awareness, both of which are significant and known
challenges for robot teleoperation [2].

Although clear differences on the subjective measures were
not found, stronger differences between conditions emerged
for the objective measures of performance. For novice users of
our system, teleoperating the Baxter robot using the positional
control interface was faster and more accurate for both of
the gross motor tasks (Keyboard press, and right arm of
Paradiddle-diddle task), as well as for the fine motor cup
stacking task. One potential reason that the difference in ac-
curacy between control conditions for controlling Baxter’s left
hand in the paradiddle-diddle task did not emerge was likely
because the vast majority (10 out of 11) of our participants
were right as opposed to left-hand dominant. Cup stacking was
also more precise when using the positional control interface
as compared to the trajectory control interface.

Even though disruptions to in-person data collection due to
the spread COVID-19 resulted in low power for our statistical
analyses, taken together, these results suggest that positional
control paradigms may provide many practical benefits for
novice users controlling robots in manipulation tasks at a
distance. Providing novice users with easy, intuitive means
to control robots has many practical implications. With the
proliferation of robots working in manufacturing, driving, pick
and place and other work settings, there is an increasing need
for collaborative robots (COBOTs) that can work in tandem
with humans [13]. If VR interfaces can provide a simple means
to program and control robots, we can leverage the expertise
of humans to build better, more intuitive robotic partners.
For instance, [14] noted that often the only thing a robot
needs to perform well is a little assistance from a human.
Using VR technologies, domain experts (who may or may not
be robotics experts) may be able to virtually provide robots
with the domain expertise needed to overcome software and
hardware problems that [currently] limit the ability of robots to
complete tasks autonomously—reconciling imagery, picking
up deformable objects, or driving the last mile, for instance.
VR interfaces show promise for allowing a variety of end users
to successfully work with robots.

VI. CONCLUSION

Deft robot manipulation can save and improve many lives.
Our study compared two different VR robot teleoperation
interfaces for performing dexterous manipulation tasks with
a Baxter robot. Results revealed that a positional control
paradigm (i.e., similar to waypoint control) was more ben-
eficial for allowing novice users to control the robot across
manipulation task types. The results have important implica-
tions for designing better human-robot collaborations.
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